Tile a square with 5 rectangles with edges in [1,10]

11*11 = 121 = 10*2 + 6*1 + 7*4 + 9*3 + 8*5

11*11 = 121 = 10*5 + 9*1 + 7*4 + 6*3 + 8*2

13*13 = 169 = 10*5 + 7*3 + 2*1 + 9*8 + 6*4

13*13 = 169 = 10*6 + 8*3 + 2*1 + 9*7 + 5*4

Here's a diagram showing the geometry involved.

          n8                  n7
       +-----+-------------------------------------+
       +     +                                     +
       +     +                                     + n6
    n1 +     +                                     +
       +     +------------------------------+------+
       +     +             n10              +      +
       +     +                              +      +
       +     +                           n9 +      +
       +     +                              +      +
       +-----+------------------------------+      + n5
       +                                    +      +
       +                                    +      +
    n2 +                                    +      +
       +                                    +      +
       +------------------------------------+------+
                       n3                      n4

Here's a sample run of tile.tc, a Tiny-C program that figures out all possible solutions of the tiling problem.

L:\hdrive.3.16.20>tc tile.tc

***  TINY-C VERSION 1.0,  COPYRIGHT 1977, T A GIBSON  ***
        This C version copyright 2017, T A Gibson

tile.tc - tct - 4/13/20

n1=10 n2=1 n3=6 n4=5 n5=8 n6=3 n7=9 n8=2 n9=7 n10=4

n1=10 n2=1 n3=9 n4=2 n5=8 n6=3 n7=6 n8=5 n9=7 n10=4

n1=10 n2=3 n3=7 n4=6 n5=4 n6=9 n7=8 n8=5 n9=1 n10=2

n1=10 n2=3 n3=8 n4=5 n5=4 n6=9 n7=7 n8=6 n9=1 n10=2
Here's a link to the source code: http://primepuzzle.com/tc/tile.tc

The program tiles a square with 5 rectangles.

It contains a nested series of loops which exhaust all combinations of the numbers 1 thru 10 which contain each number exactly once and satisfy inequalities implied by geometry.

For example: n9 < minimum n5,n1

The innermost loop uses a nested if which uses a function which returns true when its arguments satisfy a certain equality. The equalities are implied by geometry.

For example: n5 = n9+n2

When all requirements are met, the 10 numbers are displayed.