
 Copyright Notice ©

This software package and manual are copyrighted 1983,
1984 by BORLAND INTERNATIONAL Inc. All rights reserved
worldwide. No part of this publication may be
reproduced, transmitted, transcribed, stored in any
retrieval system, or translated into any language by any
means without the express written permission of BORLAND
INTERNATIONAL Inc., 4113 Scotts Valley Drive, Scotts
Valley, CA 95066, USA.

 Single CPU License

The price paid for one copy of TURBO Pascal licenses you
to use the product on one CPU when and only when you
have signed and returned the License Agreement printed
in this book.

 Disclaimer

Borland International makes no warranties as to the
contents of this manual and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Borland International further
reserves the right to make changes to the specifications
of the program and contents of the manual without
obligation to notify any person or organization of such
changes.

 Second edition, February 1984
 Printed in the United States of America
 987654321

 USER's COPY
 Program License agreement

On the condition that you sign and return this License
Agreement to Borland International Inc., Borland hereby
grants you a non exclusive and non transferable license
to use the copy of the software TURBO Pascal as
specified in this agreement on one CPU only. Failure to
sign this agreement and still use the software is
illegal.

I agree that TURBO Pascal remains the property of
Borland International Inc. and accept that giving away
or selling copies of TURBO Pascal is theft of Borland's
property and understand that this will be prosecuted by
the lawyers of Borland International.

The Reference Manual is, of course, my property but
copyrighted by Borland International Inc. as printed in
the manual.

Borland warrants that all material furnished by Borland
constitutes an accurate original manufacture of TURBO
Pascal and will replace any such material proven to be
defective, provided that such defect is found and
reported within ten days after purchase. Borland makes
no other express or implied warranties with regard to
performance or accuracy of TURBO Pascal and pertaining
documentation and specifically disclaims any implied
warranties of fitness for any particular purpose. I
agree that Borland shall not be held responsible for any
consequential damages that I may possibly incur through
the use of TURBO Pascal, whether through Borland's
negligence or not.

Termination of License. Any breach of one or more of the
provisions of this agreement by me shall constitute an
immediate termination of this agreement. Nevertheless, I
agree that in the event of such termination, all
provisions of this agreement which protect the rights of
Borland shall remain in force.

I hereby acknowledge that I have read this agreement,
understand it and agree to be bound by its terms and
conditions:

Name and signature: __________________________________
Address: ___
__________________________ My serial no: ____________

ˇ

 TABLE OF CONTENTS

INTRODUCTION ..1
 The Pascal Language ...1
 TURBO Pascal ..1
 Structure of This Manual2
 Typography ..3
 Syntax Descriptions ...4

1. USING THE TURBO SYSTEM5
1.1 .COM and .CMD files5
1.2 BEFORE USE ..5
1.3 Compiler Directive Defaults5
1.4 Files On The Distribution Disk6
1.5 Starting TURBO Pascal7
1.6 Installation ..8
1.6.1 IBM PC Screen Installation8
1.6.2 Non-IBM PC Screen Installation9
1.6.3 Installation of Editing Commands9
1.7 The Menu ...13
1.7.1 Logged Drive Selection14
1.7.2 Work File Selection14
1.7.3 Main File Selection15
1.7.4 Edit Command ...16
1.7.5 Compile Command16
1.7.6 Run Command ..16
1.7.7 Save Command ...16
1.7.8 eXecute Command17
1.7.9 Directory Command17
1.7.10 Quit Command ..17
1.7.11 compiler Options17
1.8 The TURBO Editor18
1.8.1 The Status Line18
1.8.2 Editing Commands19
1.8.3 A Note on Control Characters21
1.8.4 Before You Start: How To Get Out21
1.8.5 Cursor Movement Commands21
1.8.5.1 Basic Movement Commands21
1.8.5.2 Extended Movement Commands24
1.8.6 Insert and Delete Commands26
1.8.6.1 Insert or Overwrite?26
1.8.6.2 Simple Insert/Delete Commands27
1.8.6.3 Extended Delete Command27

TABLE OF CONTENTS I

1.8.7 Block Commands28
1.8.8 Miscellaneous Editing Commands30
1.9 The TURBO editor vs. WordStar34
1.9.1 Cursor Movement34
1.9.2 Mark Single Word34
1.9.3 End Edit ...35
1.9.4 Line Restore ...35
1.9.5 Tabulator ..35
1.9.6 Auto Indentation35

2. BASIC LANGUAGE ELEMENTS37
2.1 Basic Symbols ..37
2.2 Reserved Words ...37
2.3 Standard Identifiers38
2.4 Delimiters ...39
2.5 Program lines ..39

3. STANDARD SCALAR TYPES41
3.1 Integer ..41
3.2 Byte ...41
3.3 Real ...42
3.4 Boolean ..42
3.5 Char ...42

4. USER DEFINED LANGUAGE ELEMENTS43
4.1 Identifiers ..43
4.2 Numbers ..43
4.3 Strings ..44
4.3.1 Control Characters45
4.4 Comments ...45
4.5 Compiler Directives46

5. PROGRAM HEADING AND PROGRAM BLOCK47
5.1 Program Heading ..47
5.2 Declaration Part47
5.2.1 Label Declaration Part48
5.2.2 Constant Definition Part48
5.2.3 Type Definition Part49
5.2.4 Variable Declaration Part49
5.2.5 Procedure and Function Declaration Part50
5.3 Statement Part ...50

II TURBO Pascal Language Manual

6. EXPRESSIONS ...51
6.1 Operators ..51
6.1.1 Unary Minus ..51
6.1.2 Not Operator ...52
6.1.3 Multiplying Operators52
6.1.4 Adding Operators53
6.1.5 Relational Operators53
6.2 Function Designators54

7. STATEMENTS ..55
7.1 Simple Statements55
7.1.1 Assignment Statement55
7.1.2 Procedure Statement56
7.1.3 Goto Statement56
7.1.4 Empty Statement56
7.2 Structured Statements57
7.2.1 Compound Statement57
7.2.2 Conditional Statements57
7.2.2.1 If Statement57
7.2.2.2 Case Statement58
7.2.3 Repetitive Statements59
7.2.3.1 For Statement60
7.2.3.2 While Statement61
7.2.3.3 Repeat Statement61

8. SCALAR AND SUBRANGE TYPES63
8.1 Scalar Type ..63
8.2 Subrange Type ..64
8.3 Type Conversion ..65
8.4 Range Checking ...65

9. STRING TYPE ...67
9.1 String Type Definition67
9.2 String Expressions67
9.3 String Assignment68
9.4 String Procedures69
9.4.1 Delete ...69
9.4.2 Insert ...69
9.4.3 Str ..70
9.4.4 Val ..70

TABLE OF CONTENTS III

9.5 String Functions71
9.5.1 Copy ...71
9.5.2 Concat ...71
9.5.3 Length ...72
9.5.4 Pos ..72
9.6 Strings and Characters73

10. ARRAY TYPE ...75
10.1 Array Definition75
10.2 Multidimensional Arrays76
10.3 Character Arrays77
10.4 Predefined Arrays77

11. RECORD TYPE ..79
11.1 Record Definition79
11.2 With Statement ..81
11.3 Variant Records82

12. SET TYPE ...85
12.1 Set Type Definition85
12.2 Set Expressions86
12.2.1 Set Constructors86
12.2.2 Set Operators87
12.3 Set Assignments88

13. TYPED CONSTANTS ..89
13.1 Unstructured Typed Constants89
13.2 Structured Typed Constants90
13.2.1 Array Constants90
13.2.2 Multidimensional Array Constants91
13.2.3 Record Constants91
13.2.4 Set Constants92

14. FILE TYPES ...93
14.1 File Type Definition93
14.2 Operations on Files94
14.2.1 Assign ..94
14.2.2 Rewrite ...94
14.2.3 Reset ...94
14.2.4 Read ..95
14.2.5 Write ...95
14.2.6 Seek ..95
14.2.7 Flush ...95
14.2.8 Close ...96

IV TURBO Pascal Language Manual

14.2.9 Erase ...96
14.2.10 Rename ...96
14.3 File Standard Functions97
14.3.1 EOF ...97
14.3.2 FilePos ...97
14.3.3 FileSize ..97
14.4 Using Files ...97
14.5 Text Files ...100
14.5.1 Operations on Text Files100
14.5.2 Logical Devices102
14.5.3 Standard Files103
14.6 Text File Input and Output106
14.6.1 Read Procedure106
14.6.2 Readln Procedure108
14.6.3 Write Procedure109
14.6.4 Writeln Procedure111
14.7 Untyped Files ..112
14.7.1 BlockRead / BlockWrite112
14.8 I/O checking ...114

15. POINTER TYPES ...115
15.1 Defining a Pointer Variable115
15.2 Allocating Variables (New)116
15.3 Mark and Release116
15.4 Using Pointers117
15.5 Space Allocation119

16. PROCEDURES AND FUNCTIONS121
16.1 Parameters ...121
16.1.1 Relaxations on Parameter Type Checking123
16.1.2 Untyped Variable Parameters123
16.2 Procedures ...125
16.2.1 Procedure Declaration125
16.2.2 Standard Procedures127
16.2.2.1 ClrEol ...127
16.2.2.2 ClrScr ...127
16.2.2.3 CrtInit ..127
16.2.2.4 CrtExit ..128
16.2.2.5 Delay ..128
16.2.2.6 DelLine ..128
16.2.2.7 InsLine ..128
16.2.2.8 GotoXY ...128
16.2.2.9 LowVideo ...129
16.2.2.10 NormVideo129

TABLE OF CONTENTS V

16.2.2.11 Randomize129
16.2.2.12 Move ..129
16.2.2.13 FillChar ..129
16.3 Functions ..130
16.3.1 Function Declaration130
16.3.2 Standard Functions132
16.3.2.1 Arithmetic Functions132
16.3.2.1.1 Abs ..132
16.3.2.1.2 ArcTan ...132
16.3.2.1.3 Cos ..132
16.3.2.1.4 Exp ..133
16.3.2.1.5 Frac ...133
16.3.2.1.6 Int ..133
16.3.2.1.7 Ln ...133
16.3.2.1.8 Sin ..133
16.3.2.1.9 Sqr ..134
16.3.2.1.10 Sqrt ..134
16.3.2.2 Scalar Functions134
16.3.2.2.1 Pred ...134
16.3.2.2.2 Succ ...134
16.3.2.2.3 Odd ..134
16.3.2.3 Transfer Functions135
16.3.2.3.1 Chr ..135
16.3.2.3.2 Ord ..135
16.3.2.3.3 Round ..135
16.3.2.3.4 Trunc ..135
16.3.2.4 Miscellaneous Standard Functions136
16.3.2.4.1 Hi ...136
16.3.2.4.2 KeyPressed136
16.3.2:4.3 Lo ...136
16.3.2.4.4 Random ...136
16.3.2.4.5 Random(Num)136
16.3.2.4.6 SizeOf ...137
16.3.2.4.7 Swap ...137
16.3.2.4.8 UpCase ...137
16.4 Forward References138

17. INCLUDING FILES141

VI TURBO Pascal Language Manual

Appendices

A. CP/M-80 ..143
A.1 compiler Options143
A.1.1 Memory/Com file/cHn-file143
A.1.2 Start Address144
A.1.3 End Address ...145
A.1.4 Find Runtime Error145
A.2 Standard Identifiers146
A.3 Absolute Variables146
A.4 Addr Function ...147
A.5 Predefined Arrays147
A.5.1 Mem Array ...147
A.5.2 Port Array ..148
A.6 Array Subscript Optimization148
A.7 With Statements148
A.8 Pointer Related Items148
A.8.1 MemAvail ..148
A.8.2 Pointers and Integers149
A.9 External Subprograms149
A.1O Chain and Execute149
A.11 In-line Machine Code152
A.12 CP/M Function Calls153
A.12.1 Bdos procedure and function153
A.12.2 BdosHL function153
A.12.3 Bios procedure and function154
A.12.4 BiosHL function154
A.13 User Written I/O Drivers155
A.14 Interrupt Handling156
A.15 Internal Data Formats157
A.15.1 Basic Data Types157
A.15.1.1 Scalars ..157
A.15.1.2 Reals ..157
A.15.1.3 Strings ..158
A.15.1.4 Sets ...158
A.15.1.5 File Interface Blocks159
A.15.1.6 Pointers ...160
A.15.2 Data Structures161
A.15.2.1 Arrays ...161
A.15.2.2 Records ..161
A.15.2.3 Disk Files162
A.15.2.3.1 Random Access Files162

TABLE OF CONTENTS VII

A.15.2.3.2 Text Files162
A.15.3 Parameters ...162
A.15.3.1 Variable Parameters163
A.15.3.2 Value Parameters163
A.15.3.2.1 Scalars ..163
A.15.3.2.2 Reals ..163
A.15.3.2.3 Strings ..164
A.15.3.2.4 Sets ...164
A.15.3.2.5 Pointers164
A.15.3.2.6 Arrays and Records165
A.15.4 Function Results165
A.16 Memory Management166
A.16.1 Memory Maps ..166
A.16.1.1 Compilation in Memory166
A.16.1.2 Compilation To Disk167
A.16.1.3 Execution in Memory167
A.16.1.4 Execution of A Program File168
A.16.2 The Heap and The Stacks170

B. MS-DOS/PC-DOS and CP/M-86173
B.1 Common features173
B.1.1 Compiler Options173
B.1.1.1 Memory / Com file / cHn-file174
B.1.1.2 Minimum Code Segment Size175
B.1.1.3 Minimum Data Segment Size175
B.1.1.4 Minimum Free Dynamic Memory175
B.1.1.5 Maximum Free Dynamic Memory176
B.1.1.6 Find Runtime Error176
B.1.2 Standard Identifiers177
B.1.3 Absolute Variables177
B.1.4 Absolute Address Functions178
B.1.4.1 Addr ..178
B.1.4.2 Ofs ...178
B.1.4.3 Seg ...178
B.1.4.4 Cseg ..178
B.1.4.5 Dseg ..179
B.1.4.6 Sseg ..179
B.1.5 Predefined Arrays179
B.1.5.1 Mem Array ...179
B.1.5.2 Port Array ..180
B.1.6 With Statements180
B.1.7 Pointer Related Items180
B.1.7.1 MemAvail ..180
B.1.7.2 Pointer Values180

VIII TURBO Pascal Language Manual

B.1.7.2.1 Assigning a Value to a Pointer181
B.1.7.2.2 Obtaining The Value of a Pointer181
B.1.8 External Subprograms181
B.1.9 Chain and Execute182
B.1.10 In-line Machine Code184
B.1.11 Interrupt Handling186
B.1.11.1 Intr procedure186
B.1.12 Internal Data Formats187
B.1.12.1 Basic Data Types187
B.1.12.1.1 Scalars ..187
B.1.12.1.2 Reals ..188
B.1.12.1.3 Strings ..188
B.1.12.1.4 Sets ...189
B.1.12.1.5 Pointers189
B.1.12.2 Data Structures189
B.1.12.2.1 Arrays ...190
B.1.12.2.2 Records ..190
B.1.12.2.3 Disk Files190
B.1.12.2.4 Text Files191
B.1.12.3 Parameters191
B.1.12.3.1 Variable Parameters192
B.1.12.3.2 Value Parameters192
B.1.12.3.2.1 Scalars193
B.1.12.3.2.2 Reals ..193
B.1.12.3.2.3 Strings193
B.1.12.3.2.4 Sets ...193
B.1.12.3.2.5 Pointers193
B.1.12.3.2.6 Arrays and Records193
B.1.12.4 Function Results194
B.1.12.5 The Heap and The Stacks194
B.2 The MS-DOS / PC-DOS Implementations196
B.2.1 Standard Identifiers196
B.2.2 Function Calls196
B.2.3 User Written I/O Drivers196
B.2.4 File Interface Blocks198
B.2.5 Random Access Files199
B.2.6 Operations on Files200
B.2.6.1 Extended File Size200
B.2.6.2 File of Byte200
B.2.6.3 Flush Procedure200

TABLE OF CONTENTS IX

B.3 The CP/M-86 Implementation201
B.3.1 Standard Identifiers201
B.3.2 Function Calls201
B.3.3 User Written I/O Drivers201
B.3.4 File Interface Blocks202
B.3.5 Random Access Files204

C. SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS
...205
C.1 Input/Output Procedures and Functions205
C.2 Arithmetic Functions206
C.3 Scalar Functions206
C.4 Transfer Functions206
C.5 String Procedures and Functions207
C.6 File handling routines207
C.7 Heap Control Procedures and Functions208
C.8 Screen Related Procedures208
C.9 Miscellaneous Procedures and Functions208

D. SUMMARY OF OPERATORS211

E. SUMMARY OF COMPILER DIRECTIVES213
E.1 Common Compiler Directives214
E.1.1 B - I/O Mode Selection214
E.1.2 C - Control S and C214
E.1.3 I - I/O Error Handling214
E.1.4 I - Include Files214
E.1.5 R - Index Range Check215
E.1.6 V - Var-parameter Type Checking215
E.1.7 U - User Interrupt215
E.2 CP/M-80 Compiler Directives216
E.2.1 A - Absolute Code216
E.2.2 W - Nesting of With Statements216
E.2.3 X - Array Optimization216
E.3 CP/M-86 / MS-DOS / PC-DOS Compiler Directives217
E.3.1 K - Stack Checking217

F. TURBO VS. STANDARD PASCAL219
F.1 Dynamic Variables219
F.2 Recursion ...219
F.3 Get and Put ...219
F.4 Goto Statements220
F.5 Page Procedure ..220
F.6 Packed Variables220
F.7 Procedural Parameters220

X TURBO Pascal Language Manual

G. COMPILER ERROR MESSAGES221

H. RUN-TIME ERROR MESSAGES225

I. I/O ERROR MESSAGES227

J. TRANSLATING ERROR MESSAGES229
J.1 Error Message File Listing230

K. TURBO SYNTAX ...233

L. ASCII TABLE ..239

M. HELP!!! ..241

N. TERMINAL INSTALLATION243
N.1 IBM PC Display Selection243
N.2 Non-IBM PC Installation244

0. SUBJECT INDEX ..249

XI TURBO Pascal Language Manual

 LIST OF FIGURES

1-1 Structure of Manual3

1-1 Log-on Message ..7
1-2 Main Menu ...7
1-3 Installation Main Menu8
1-4 Main Menu ..13
1-5 Editor Status Line18

A-1 Options Menu ..143
A-2 Start and End Addresses144
A-3 Run-time Error Message145
A-4 Find Run-time Error146
A-5 Memory map during compilation in memory166
A-6 Memory map during compilation to a file167
A-7 Memory map during execution in direct mode 1...........168
A-8 Memory map during execution of a program file169

B-1 Options Menu ..173
B-2 Memory Usage Menu174
B-3 Run-time Error Message176
B-4 Find Run-time Error176

N-1 IBM PC Screen Installation Menu243
N-2 Terminal Installation Menu244

 LIST OF TABLES

1-1 Editing Command Values12
1-2 Editing Command Overview20

14-1 Operation of EOLN and Eof103

TABLE OF CONTENTS XII

 INTRODUCTION

This book is a reference manual for the TURBO Pascal system as implemen-
ted for the CP/M-80, CP/M-86, and MS/DOS operating systems. Although
making thorough use of examples, it is not meant as a Pascal tutorial or text-
book, and at least a basic knowledge of Pascal is assumed.

The Pascal Language

Pascal is a general-purpose, high level programming language originally de-
signed by Professor Niklaus Wirth of the Technical University of Zurich, Swit-
zerland and named in honor of Blaise Pascal, the famous French Seven-
teenth Century philosopher and mathematician.

Professor Wirth's definition of the Pascal language, published in 1971, was
intended to aid the teaching of a systematic approach to computer program-
ming, specifically introducing structured programming. Pascal has since been
used to program almost any task on almost any computer. Pascal is today
established as one of the foremost high-level languages; whether the applica-
tion is education or professional programming.

TURBO Pascal

TURBO Pascal is designed to meet the requirements of all categories of
users: it offers the student a friendly interactive environment which greatly
aids the learning process; and in the hands of a programmer it becomes an
extremely effective development tool providing both compilation and execu-
tion times second to none.

TURBO Pascal closely follows the definition of Standard Pascal as defined by
K. Jensen and N. Wirth in the Pascal User Manual and Report. The few and
minor differences are described in section F. A number of extensions are pro-
vided. Among these are:

 Absolute address variables
 Bit/byte manipulation
 Direct access to CPU memory and data ports
 Dynamic strings
 Free ordering of sections within declaration part
 Full support of operating system facilities

INTRODUCTION 1

 In-line machine code generation
 Include files
 Logical operations on integers
 Program chaining with common variables
 Random access data files
 Structured constants
 Type conversion functions

In addition, some extra standard procedures and functions are included to
further increase the versatility of TURBO Pascal.

Structure of This Manual

As this manual describes three slightly different TURBO Pascal implementa-
tions, CP/M-80, CP/M-86, and MS-DOS/PC-DOS, the reader should keep
the following structure in mind:

1: Chapter 1 describes the installation and use of TURBO Pascal, the built-in
editor, etc. This information applies to all three implementations.
2: The main body of the manual, chapters 2 through 17, describe the com-
mon parts of TURBO Pascal, i.e. those parts of the language which are
identical in all three versions. These include Standard Pascal and many ex-
tensions. As long as you use the language as described in these chapters,
your programs will be fully portable between implementations.
3: Appendices A and B describe items which have not been covered in pre-
vious chapters because they differ among implementations, e.g. special
features, requirements, and limitations of each implementation. To avoid
confusion, you need only read the one appendix pertaining to your
implementation. These appendices mostly describe the more intricate de-
tails of programming (e.g. direct memory and port accesses, user written
I/O drivers, internal data formats, etc.), and need only be read by those
who wish to use TURBO Pascal to its fullest extent. Remember, however,
that as these things are implementation dependent, programs using them
are no longer directly portable between implementations.
4: The remaining appendices are common to all implementations and contain
summaries of language elements, syntax diagrams, error messages, an
alphabetical subject index, etc.

Appendix M contains some answers to the most common questions - read
them if you have any problems.

2 TURBO Pascal Language Manual

The following is a graphic representation of the manual:
 +--------------------+
 | TURBO system |
 |installation and use|
 +--------------------+
 |
 +----------------------+
 | Common manual |
 |for portable programs |
 +----------------------+
 |

 | |
+-----------------+ +------------------+
|Special features | |Special features |
|for 8-bit systems| |for 16-bit systems|
+-----------------+ +------------------+
 | |
 | ---------------------------
 | | |
 | +--------------------+ +--------------------+
 | |Special features for| |Special features for|
 | | PC-DOS / MS-DOS | | CP/M-86 |
 | +--------------------+ +--------------------+
 | | |

 |
 +-----------------+
 |Common appendices|
 +-----------------+
 Figure 1: Structure of Manual

Typography

The body of this manual is printed in normal typeface. Special characters are
used for the following special purposes:

Typewriter Typewriter-characters are used to illustrate program ex-
 amples and screen output. Screen images are furthermore
 shown in rectangular fields of thin lines.
Italics Italics are used in general to emphasize sections of the
 text. In particular, pre-defined standard identifiers are
 printed in italics, and elements in syntax descriptions (see
 below) are printed in italics. The meaning of the use of ita-
 lics thus depends on the context.
Boldface Boldface is used to mark reserved words; in the text as
 well as in program examples.

INTRODUCTION 3

Margins Certain sections, like this one, are printed in smaller type and with an
extra wide margin. This indicates that their contents is of a less impor-
tant nature than the surrounding text, and that they may therefore be
skipped on a first reading of this manual.

Syntax Descriptions

The entire syntax of the Pascal language expressed as Backus-Naur Forms is
collected in in appendix K which also describes the typography and special
symbols used in these forms.

Where appropriate syntax descriptions are also used more specifically to
show the syntax of single language elements as in the following syntax desc-
ription of the function Concat:

 Concat(St1 , St2 {,StN})

Reserved words are printed in boldface, standard identifiers use mixed upper
and lower case, and elements explained in the text are printed in
italics.

The text will explain that St1, St2, and StN must be string expressions. The
syntax description shows that the word Concat must be followed by two or
more string expressions, separated by commas and enclosed in parentheses.
In other words, the following examples are legal (assuming that Name is a
string variable):

Concat('TURBO',' Pascal')
Concat('TU','RBO',' Pascal')
Concat('T','U','R','B','O' ,Name)

4 TURBO Pascal Language Manual

USING THE TURBO SYSTEM 1

 1. USING THE TURBO SYSTEM

This chapter describes the installation and use of the TURBO Pascal system,
specifically the built-in editor.

1.1 .COM and .CMD files

Files with the extension .COM mark the executable program files in CP/M-80
and MS-DOS / PC-DOS. In CP/M-86 these will instead be marked .CMD.
Thus, whenever .COM-files are mentioned in the following, it should be un-
derstood as .CMD if your operating system is CP/M-86.

1.2 BEFORE USE

Before using the TURBO Pascal you should, for your own protection, make a
work-copy of the distribution diskette and store the original safely away. Re-
member that the User's License allows you to make as many copies as you
need for your own personal use and for backup purposes only. Use a file-
copy program to make the copy, and make sure that all files are successfully
transferred.

1.3 Compiler Directive Defaults

 READ THIS!!!

TURBO Pascal provides a number of compiler directives to control
special runtime facilities like e.g. index checking, recursion (CP/M-80
only), etc. PLEASE NOTICE that the default settings of these directi-
ves will optimize execution speed and minimize code size. Thus, a
number of runtime facilities (such as index checking and recursion)
are de-selected until explicitly selected by the programmer. All com-
piler directives and their default values are described in appendix E.

USING THE TURBO SYSTEM 5

1.4 Files On The Distribution Disk

1.4 Files On The Distribution Disk

The distribution disk contains the following files:

TURBO.COM The TURBO Pascal program. When you enter the
 command TURBO on your terminal, this file will load, and
 the program will be up and running.
TURBO.OVR Overlay file for TURBO.COM (CP/M-80 version only).
 Needs only be present on the run-time disk if you want to
 execute .COM files from TURBO.
TURBO.MSG Text file containing error messages. Needs not be present
 on your run-time disk if you will accept the system wit-
 hout explanatory compile-time error messages. Errors will
 in that case just print out an error number, and the manual
 can be consulted to find the explanation. In any case, as
 the system will automatically point out the error, you may
 find it an advantage to use TURBO without these error
 messages; it not only saves space on the disk, but more
 importantly, it gives you approx 1.5 Kbytes extra memory
 for programs. This message file may be edited if you wish
 to translate error messages into another language - more
 about that in appendix J
TLIST.COM Source text listing program. Needs not be present on run-
 time disk.
TINST.COM Installation program. Just type TINST at your terminal,
 and the program takes you through a completely menu-
 driven installation procedure. This and the following files
 need not be present on your run-time disk.
TINST.DTA Terminal installation data (not present on IBM PC ver-
 sions).
TINST.MSG Messages for the installation program. Even this file may
 be translated into any language desired.
.PAS files Sample Pascal programs.
READ.ME If present, this file contains the latest corrections or sug-
 gestions on the use of the system.

Only TURBO.COM must to be on your run-time disk. A fully operative
TURBO Pascal thus requires only 28 K of disk space (33 K for 16-bit sy-
stems). TURBO.OVR is required only if you want to be able to execute pro-
grams from the TURBO menu. TURBO.MSG is needed only if you want on-
line compile-time error messages. TLIST.COM is used only to list TURBO pro-
grams on the printer, and finally all TINST files are used only for the installa-
tion procedure. The example .PAS files, of course, may be included on the
run-time disk if so desired, but are not necessary.

6 TURBO Pascal Language Manual

Starting TURBO Pascal 1.5

1.5 Starting TURBO Pascal

When you have a copy of the system on your work-disk, enter the command

 TURBO

at your terminal. The system will log on with the following message:

+--+
| TURBO Pascal release n.nn - [version] |
| Copyright (C) 1983 by BORLAND International |
| No terminal selected |
| |
| Include error messages (Y/N)? _ |
+--+
 Figure 1-1: Log-on Message

In the first line, n.nn identifies your release number and [version] indicates the
operating environment (operating system and CPU),
e.g. CP/M-86 on IBM PC. The third line tells you which screen is instal-
led. At the moment none - but more about that later.

If you enter a Y in response to the question, the error message file will be read
into memory (if it is on the disk), briefly displaying the
message Loading TURBO.MSG. You may instead answer N and save about
1.5 Kbytes of
memory. Then the TURBO main menu will appear:

+--+
| |
| Logged drive: A |
| |
| Work file: |
| Main file: |
| |
| Edit Compile Run Save |
| eXecute Dir Quit compiler Options |
| |
| Text: 0 bytes |
| Free: 62903 bytes |
+--+
 Figure 1-2: Main Menu

USING THE TURBO SYSTEM 7

1.5 Starting TURBO Pascal

The menu shows you the commands available, each of which will be descri-
bed in detail in following sections. Each command is executed by entering the
associated capital letter (highlighted after terminal installation if your terminal
has that feature). Don't press <RETURN>, the command executes im-
mediately. The values above for Logged drive and memory use are for the
sake of example only; the values shown will be the actual values for your
computer.

IBM PC users can use TURBO as it comes and may skip the following and go
to section 1.7. If you're an non-IBM PC user, you may use TURBO without
installation if you don't plan to use the built-in editor - but assuming that you
do, type Q now to leave TURBO for a minute to perform the
installation.

1.6 Installation

Type TINST to start the installation program. All TINST files and the
TURBO.COM file must be on the logged drive. This menu will
appear:

+--+
| |
| TURBO Pascal installation menu. |
| Choose installation item from the following: |
| |
| [S]creen installation | [C]ommand installation | [Q]uit |
| |
| Enter S, C, or Q: |
| |
+--+
 Figure 1-3: Installation Main Menu

1.6.1 IBM PC Screen Installation

When you hit S to perform Screen installation, a menu will appear which lets
you select the screen mode you want to use while running TURBO (see ap-
pendix N for details). When you have made your choice, the main menu re-
appears, and you may now continue with the Command installation de-
scribed in section 1.6.3 or you may terminate the installation at this point by
entering Q for Quit.

8 TURBO Pascal Language Manual

Non-IBM PC Screen Installation 1.6.2

1.6.2 Non-IBM PC Screen Installation

Now hit S to select Screen installation. A menu containing the names of the
mostly used terminals will appear, and you may choose the one that suits you
by entering the appropriate number. If your terminal is not on the menu, nor
compatible with any of these (note that a lot of terminals are compatible with
e.g. ADM-3A), then you must perform the installation yourself. This is quite
straightforward, but you will need to consult the manual that came with your
terminal to answer the questions asked by the installation menu. See appen-
dix N for details.

When you have chosen a terminal, you are asked if you want to modify the in-
stallation before installation. This can be used if you have e.g. an ADM-3A
compatible terminal with some additional features. Choose the ADM-3A and
add the required commands to activate the special features. If you answer
Yes, you will be taken through a series of questions as described in appendix
N.

Normally, you will answer No to this question, which means that you are sa-
tisfied with the pre-defined terminal installation. Now you will be asked the
operating frequency of your microprocessor. Enter the appropriate value (2, 4,
6 or 8, most probably 4).

After that, the main menu re-appears, and you may now continue with the
Command installation described in the next section or you may terminate the
installation at this point by entering Q for Quit.

1.6.3 Installation of Editing Commands

The built-in editor responds to a number of commands which are used to
move the cursor around on the screen, delete and insert text, move text etc.
These commands have default values which comply with the 'standard' set by
WordStar, but they may easily be taylored to fit your taste or your keyboard.
When you hit C for Command installation, the first command appears:

+--+
| |
| CURSOR MOVEMENTS: |
| 1: Character left Ctrl-S -> _ |
| |
+--+

USING THE TURBO SYSTEM 9

1.6.3 Installation of Editing Commands

This tells you that the command to move the cursor one character to the left
is currently a Ctrl-S (Control-S, i.e. hold down the key marked CONTROL or
CTRL and press S), as in WordStar. If you want to use another command, you
may enter it following the -> in either of two ways:

1) Simply press the key you want to use. It could be a function key (e.g. a
left-arrow-key, if you have it) or any other key or sequence of keys that
you choose (max. 4). The installation program responds with a mnemonic
of each character it receives. If you have a left-arrow-key that transmits an
<ESCAPE> character followed by a lower case a, and you press this key in
the situation above, your screen will look like this:

+--+
| |
| CURSOR MOVEMENTS: |
| 1: Character left Ctrl-S -><ESC> a _ |
| |
+--+

2) Instead of pressing the actual key you want to use, you may enter the AS-
CII value(s) of the character(s) in the command. The values of multiple
characters are entered separated by spaces. Decimal values are just ente-
red: 27; hexadecimal values are prefixed by a dollar-sign:$1B. This may be
useful to install commands which are not presently available on your key-
board, e.g. if you want to install the values of a new terminal while still us-
ing the old one. This facility has just been provided for very few and rare
instances, because there is really no idea in defining a command that can-
not be generated by pressing a key. But it's there for those who wish to
use it.

In both cases, terminate your input by pressing <RETURN>.Notice that the
two methods cannot be mixed within one command, i.e. if you have started
defining a command sequence by pressing keys, you must define all charac-
ters in that command by pressing keys and vise versa.

You may enter a - (minus) to remove a command from the list, and a B backs
through the list one item at a time.

10 TURBO Pascal Language Manual

Installation of Editing Commands 1.6.3

The editor accepts a total of 45 commands, and they may all be changed to
your specification. If you make an error in the installation, e.g. define the same
command for two different purposes, an self-explanatory error message is is-
sued, and you must correct the error before terminating the installation. The
following table lists the default value and the use of each command, and
space is allowed for you to mark your changes, if any.

CURSOR MOVEMENTS:

1: Character left Ctrl-S ->__
2: Alternative Ctrl-H ->__
3: Character right Ctrl-D ->__
4: Word left Ctrl-A ->__
5: Word right Ctrl-F ->__
6: Line up Ctrl-E ->__
7: Line down Ctrl-X ->__
8: Scroll up Ctrl-W ->__
9: Scroll down Ctrl-Z ->__
10: Page up Ctrl-R ->__
11: Page down Ctrl-C ->__
12: To left on line Ctrl-Q Ctrl-S ->___
13: To right on line Ctrl-Q Ctrl-D ->___
14: To top of page Ctrl-Q Ctrl-E ->___
15: To bottom of page Ctrl-Q Ctrl-X ->___
16: To top of file Ctrl-Q Ctrl-R ->___
17: To end of file Ctrl-Q Ctrl-C ->___
18: To beginning of block Ctrl-Q Ctrl-B ->___________________________________
19: To end of block Ctrl-Q Ctrl-B ->___________________________________
20: To last cursor position Ctrl-Q Ctrl-P ->___________________________________

INSERT & DELETE:

21: Insert mode on/off Ctrl-V ->____________________________________
22: Insert line Ctrl-N ->____________________________________
23: Delete line Ctrl-Y ->____________________________________
24: Delete to end of line Ctrl-Q Ctrl-Y ->_____________________________
25: Delete right word Ctrl-T ->____________________________________
26: Delete character under cursor Ctrl-G ->____________________________________
27: Delete left character ->_____________________________________
28: Alternative: Nothing ->___________________________________

USING THE TURBO SYSTEM 11

1.6.3 Installation of Editing Commands

BLOCK COMMANDS:

29: Mark block begin Ctrl-K Ctrl-B ->______________________________________
30: Mark block end Ctrl-K Ctrl-K ->______________________________________
31: Mark single word Ctrl-K Ctrl-T ->______________________________________
32: Hide/display block Ctrl-K Ctrl-W ->______________________________________
33: Copy block Ctrl-K Ctrl-C ->______________________________________
34: Move block Ctrl-K Ctrl-V ->______________________________________
35: Delete block Ctrl-K Ctrl-Y ->______________________________________
36: Read block from disk Ctrl-K Ctrl-R ->______________________________________
37: Write block to disk Ctrl-K Ctrl-W ->______________________________________

MISC. EDITING COMMANDS:

38: End edit Ctrl-K Ctrl-D ->__________________________________
39: Tab Ctrl-I ->___
40: Auto tab on/off Ctrl-Q Ctrl-I ->__________________________________
41: Restore line Ctrl-Q Ctrl-L ->__________________________________
42: Find Ctrl-Q Ctrl-F ->__________________________________
43: Find & replace Ctrl-Q Ctrl-A ->__________________________________
44: Repeat last find Ctrl-L ->___
45: Control character prefix Ctrl-P ->___

 Table 1-1: Editing Command Values

Items 2 and 28 let you define alternative commands to Character Left and
Delete left Character commands. Normally <BS> is the alternative to Ctrl-S,
and there is no defined alternative to . You may redefine these to suit
your keyboard, e.g. to use the <BS> as an alternative to if the <BS>
key is more conveniently located. Of course, the two alternative commands
must be unambiguous like all other commands.

12 TURBO Pascal Language Manual

The Menu 1.7

1.7 The Menu

After installation, you once again activate TURBO Pascal by typing the com-
mand TURBO. Your screen should now clear and display the menu, this time
with the command letters highlighted. If not, check your installation data.

+--+
| |
| Logged drive: A |
| |
| Work file: |
| Main file: |
| |
| Edit Compile Run Save |
| eXecute Dir Quit compiler Options |
| |
| Text: 0 bytes |
| Free: 62903 bytes |
| |
| > _ |
| |
+--+
 Figure 1-4: Main Menu

By the way, whenever highlighting is mentioned here, it is naturally assumed
that your screen has different video attributes to show text e.g. in different in-
tensities, inverse, underline or some other way. If not, just disregard any men-
tion of highlighting.

This menu shows you the commands available to you while working with
TURBO Pascal. A command is activated by pressing the associated upper
case (highlighted) letter. Don't press <RETURN>, the command is executed
immediately. The menu may very well disappear from the screen when work-
ing with the system; it is easily restored by entering an 'illegal command', i.e.
any key that does not activate a command. <RETURN> or <SPACE> will do
perfectly.

The following sections describe each command in detail.

USING THE TURBO SYSTEM 13

1.7.1 Logged Drive Selection

1.7.1 Logged Drive Selection

The L command is used to change the currently logged drive. When entering
an L, the following prompt is issued:

 New drive: _

inviting you to enter a drive name, i.e. a letter from A through P, optionally fol-
lowed by a colon and terminated with <RETURN>. If you don't want to
change the current value, just hit <RETURN>. The L command performs a
disk-reset, even when you don't change the drive, and should therefore be
used whenever you change disks to avoid a fatal disk write error (CP/M only!).

The new drive is not immediately shown on the menu, as it is not automati-
cally updated. Hit e.g. <SPACE> to display a fresh menu which will show the
new logged drive.

1.7.2 Work File Selection

The W command is used to select a work file, i.e. the file to be used to Edit,
Compile, Run, eXecute, and Save. The W command will issue this com-
mand:

 Work file name: _

and you may respond with any legal file name, i.e. a name of one through
eight characters, an optional period, and an optional file type of no more than
three characters:

 FILENAME.TYP

If you enter a file name without period and file type, the file type PAS is auto-
matically assumed and appended to the name. You may explicitly specify a
file name with no file type by entering a period after the name, but omitting
the type.

Examples:

 PROGRAM becomes PROGRAM.PAS
 PROGRAM. is not changed
 PROGRAM.FIL is not changed

File types .BAK, .CHN, and .COM/.CMD should be avoided, as TURBO uses
these names for special purposes.

14 TURBO Pascal Language Manual

Work File Selection 1.7.2

When the Work file has been specified, the file is read from disk, if present. If
the file does not already exist, the message New File is issued. If you have
edited another file which you have not saved, the message:

Workfile X:FILENAME.TYP not saved. Save (Y/N)? _

warns you that you are about to load a new file into memory and overwrite
the one you have just worked on. Answer Y to save or N to skip.

The new work file name will show on the menu the next time it is updated,
e.g. when you hit <SPACE>.

1.7.3 Main File Selection

The M command may be used to define a main file when working with
programs which use the compiler directive $I to include a file. The Main
file should be the file which must start the compilation, i.e. the file
which contains the include directives. You can then define the Work file to be
different from the Main file, and thus edit different include files while
leaving the name of the Main file unchanged.

When a compilation is started, and the Work file is different from the
Main file, the current Work file is automatically saved , and the Main file
is loaded into memory. If an error is found during compilation, the file
containing the error (whether it is the Main file or an include file) auto-
matically becomes the Work file which may then be edited. When the
error has been corrected and compilation is started again, the corrected
Work file is automatically saved, and the Main file is re-loaded.

The Main file name is specified as described for the Work file name in
the previous section.

USING THE TURBO SYSTEM 15

1.7.4 Edit Command

1.7.4 Edit Command

The E command is used to invoke the built-in editor and edit the file defined
as the Work file. If no Work file is specified, you are first asked to specify one.
The menu disappears, and the editor is activated. More about the use of the
editor in section 1.8.

While you may use the TURBO system to compile and run programs without
installing a terminal, the use of the editor requires that your terminal be instal-
led. See section 1.6.

1.7.5 Compile Command

The C command is used to activate the compiler. If no Main file is specified,
the Work file will be compiled, otherwise the Main file will be compiled. In the
latter case, if the Work file has been edited, you will be asked whether or not
to save it before the Main file is loaded and compiled. The compilation may be
interrupted at any moment by pressing a key.

The compilation may result either in a program residing in memory, in a .COM
file, or in a .CHN file. The choice is made on the compiler Options menu de-
scribed in sections A.1 (8 bit systems) and B.1.1 (16 bit systems). The default
is to have the program residing in memory.

1.7.6 Run Command

The R command is used to activate a program residing in memory or, if the C-
switch on the compiler Options menu is active, a TURBO object code file (.-
COM or .CMD file). If a compiled program is already in memory, it will be acti-
vated. If not, a compilation will automatically take place following the rules
above.

1.7.7 Save Command

The S command is used to save the current Work file on disk. The old version
of this file, if any, will be renamed to .BAK, and the new version will be saved.

16 TURBO Pascal Language Manual

eXecute Command 1.7.8

1.7.8 eXecute Command

The X command lets you run other programs from within TURBO Pas-
cal, e.g. copying programs, word processors - in fact anything that you
can run from your operating system. When entering X, you are promp-
ted:

Command: _

You may now enter the name of any program which will then load and
run normally. Upon exit from the program, control is re-transferred to
TURBO Pascal, and you return to the TURBO prompt > .

1.7.9 Directory Command

The D command gives you a directory listing and information about remaining
space on the logged drive. When hitting D, you are prompted thus:

Dir mask: _

You may enter a drive designator or a drive designator followed by a file name
or a mask containing the usual wildcards * and ? . Or you may just hit
<RETURN> to get a full directory listing.

1.7.10 Quit Command

The Quit command is used to leave the TURBO system. If the Work file has
been edited since it was loaded, you are asked whether you want to save it
before quitting.

1.7.11 compiler Options

The O command selects a menu on which you may view and change
some default values of the compiler. It also provides a helpful function
to find run-time errors in programs compiled into object code files.

As these options vary between implementations, further discussion is
deferred to appendices A and B.

USING THE TURBO SYSTEM 17

1.8 The TURBO Editor

1.8 The TURBO Editor

The built-in editor is a screen-editor specifically designed for the creation of
program text. If you are familiar with MicroPro's WordStar, you will need no
further instruction in the use of the TURBO editor, as the standard definition
of all commands are exactly like the ones you know from WordStar. There are
a few minor differences, and the TURBO editor has a few extensions; these
are discussed in section 1.9.

Using the TURBO editor is simple as can be: when you have defined a Work
file and hit E, the menu disappears, and the editor is activated. If the Work file
exists on the drive, it is loaded and the first page of text is displayed. If it is a
new file, the screen is blank apart from the status line at the top.

Text is entered on the keyboard just as if you were using a typewriter. To ter-
minate a line, press the <RETURN> key (or CR or ENTER or whatever it is cal-
led on your keyboard). When you have entered enough lines to fill the screen,
the top line will scroll off the screen, but don't worry, it is not lost, and you
may page back and forth in your text with the editing commands described la-
ter.

Let us first take a look at the meaning of the status line at the top of the
screen.

1.8.1 The Status Line

The top line on the screen is the status line containing the following informa-
tion:

+--+
| |
| Line n Col n Insert Indent X:FILENAME.TYP |
| |
+--+

 Figure 1-5: Editor Status Line

Line n Shows the number of the line containing the cursor counted
 from the start of the file.
Col n Shows the number of the column containing the cursor coun-
 ted from the left side of the screen.

18 TURBO Pascal Language Manual

The Status Line 1.8.1

Insert Indicates that characters entered on the keyboard will be
 inserted at the cursor position, i.e. that existing text to the
 right of the cursor will move to the right as you write new
 text. Using the insert mode on/off command (Ctrl-V by
 default) will instead display the text Overwrite. Text entered
 on the keyboard will then overwrite characters under the
 cursor instead of inserting them.
Indent Indicates that auto-indentation is in effect. It may be switch-
 ed off by the auto-indent on/off command (Ctrl-Q Ctrl-I by
 default).
X:FILENAME.TYP
 The drive, name, and type of the file being edited.

1.8.2 Editing Commands

As mentioned before, text is written as if you were using a typewriter, but as
this is a computerized text editor, it offers you a number of editing facilities
which make text manipulation, and in this case specifically program writing,
much easier than on paper.

The TURBO editor accepts a total of 45 editing commands to move the cur-
sor around, page through the text, find and replace text strings, etc, etc. These
commands can be logically grouped into the following four categories:

 Cursor movement commands,
 Insert and delete commands,
 Block commands, and
 Miscellaneous commands

Each of these groups contain logically related commands which will be desc-
ribed separately in following sections. The following table provides an over-
view of the commands available:

USING THE TURBO SYSTEM 19

1.8.2 Editing Commands

CURSOR MOVEMENT COMMANDS:
 Character left To top of screen
 Character right To top of file
 Word left To top of file
 Word right To end of file
 Line up To left on line
 Line down To right on line
 Scroll up To beginning of block
 Scroll down To end of block
 Page up To last cursor position
 Page down

INSERT & DELETE COMMANDS:
 Insert mode on/off Delete right word
 Insert line Delete character under cursor
 Delete line Delete left character
 Delete to end of line

BLOCK COMMANDS: MISC. EDITING COMMANDS:
 Mark block begin End edit
 Mark block end Tab
 Mark single word Auto tab on/off
 Copy block Restore line
 Move block Find
 Delete block Find & replace
 Read block from disk Repeat last find
 Write block to disk Control character prefix
 Hide/display block

 Table 1-2: Editing Command Overview

In a case like this, the best way of learning is by doing; so start TURBO, spe-
cify one of the demo Pascal programs as Work file, and enter E to Edit. Then
try the commands as you read on.

Hang on, even if you find it a bit hard in the beginning. It is not just by chance
we have chosen to make the TURBO editor WordStar compatible - the logic
of these commands, once learned, quickly become so much a part of you that
the editor virtually turns into an extension of your mind. Take it from one who
has written megabytes worth of text with that editor. Deep in the night this
man/machine synthesis reaches frightening proportions.

20 TURBO Pascal Language Manual

Editing Commands 1.8.2

Each of the following descriptions consists of a heading defining the com-
mand, followed by the default keystrokes used to activate the command, with
room in between to note which keys to use on your terminal, if you use other
keys. If you have arrow keys and dedicated word processing keys (insert, de-
lete, etc.), it might be convenient to use these. Please refer to section 1.6.3 for
installation details.

The following descriptions of the commands assume the use of the
default Word-Star compatible keystrokes.

1.8.3 A Note on Control Characters

All commands are issued using control characters. A control character is a
special character generated by your keyboard when you hold down the
<CONTROL> (or <CTRL>) key on your keyboard and press any key from A
through Z (well, even [,\,],^, and _ may generate control characters for that
matter).

The <CONTROL> key works like the <SHIFT> key: if you hold down the
<SHIFT> key and press A, you will get a capital A; if you hold down the
<CONTROL> key and press A, you will get a Control-A (Ctrl-A for short).

1.8.4 Before You Start: How To Get Out

The command which takes you out of the editor is described in section 1.8.8,
but you may find it useful to know already now that the Ctrl-K Ctrl-D com-
mand exits the editor and returns you to the menu environment. This com-
mand does not automatically save the file; that must be done with the Save
command from the menu.

1.8.5 Cursor Movement Commands

1.8.5.1 Basic Movement Commands

The most basic thing to learn about an editor is how to move the cursor
around on the screen, The TURBO editor uses a special group of control cha-
racters to do that, namely the control characters A, S, D, F, E, R, X, and C.

USING THE TURBO SYSTEM 21

1.8.5.1 Basic Movement Commands

Why these? Because they are conveniently located close to the control-key,
so that your left little finger can rest on that while you use the middle and in-
dex fingers to activate the commands. Furthermore, the characters are arran-
ged in such a way on the keyboard as to logically indicate their use. Let's exa-
mine the basic movements: cursor up, down, left, and right:

 E
 S D
 X

These four characters are placed so that it is logical to assume that Ctrl-E mo-
ves the cursor up, Ctrl-X down, Ctrl-S to the left, and Ctrl-D to the right. And
that is exactly what they do. Try to move the cursor around on the screen with
these four commands. If your keyboard has repeating keys, you may just hold
down the control key and one of these four keys, and the cursor will move ra-
pidly across the screen.

Now let us look at some extensions of those movements:

 E R
 A S D F
 X C

The location of the Ctrl-R next to the Ctrl-E implies that Ctrl-R moves the cur-
sor up, and so it does, only not one line at the time but a whole page. Simi-
larly, Ctrl-C moves the cursor down one page at a time.

Likewise with Ctrl-A and Ctrl-F: Ctrl-A moves to the left like Ctrl-S, but a
whole word at a time, and Ctrl-F moves one word to the right.

The two last basic movement commands do not move the cursor but scrolls
the entire screen upwards or downwards in the file:

 W E R
 A S D F
 Z X C

Ctrl-W scrolls up in the file (the lines on the screen move down), and Ctrl-Z
scrolls down in the file (the lines on the screen move up).

22 TURBO Pascal Language Manual

Basic Movement Commands 1.8.5.1

Character left Ctrl-S

Moves the cursor one character to the left non-destructively, i.e. without af-
fecting the character there. <BACKSPACE> may be installed to have the
same effect. This command does not work across line breaks, i.e. when the
cursor reaches the left edge of the screen, it stops.

Character right Ctrl-D

Moves the cursor one character to the right non-destructively, i.e. without af-
fecting the character there. This command does not work across line breaks,
i.e. when the cursor reaches the right end of the screen, the text starts scroll-
ing horizontally until the cursor reaches the extreme right of the line, in co-
lumn 128, where it stops.

Word left Ctrl-A

Moves the cursor to the beginning of the word to the left. A word is defined as
a sequence of characters delimited by one of the following characters: |space|
< > , ; . () [] ^ ' * + - / $. This command works across line breaks.

Word right Ctrl-F

Moves the cursor to the beginning of the word to the right. See the definition
of a word above. This command works across line breaks.

Line up Ctrl-E

Moves the cursor to the line above. If the cursor is on the top line, the screen
scrolls down one line.

Line down Ctrl-X

Moves the cursor to the line below. If the cursor is on the second-last line, the
screen scrolls up one line.

Scroll up Ctrl-W

Scrolls 'up' towards the beginning of the file, one line at a time (i.e. the entire
screen scrolls down). The cursor remains on its line until it reaches the bottom
of the screen.

USING THE TURBO SYSTEM 23

1.8.5.1 Basic Movement Commands

Scroll down Ctrl-Z

Scrolls 'down' towards the end of the file, one line at a time (i.e. the entire sc-
reen scrolls up). The cursor remains on its line until it reaches the top of the
screen.

Page up Ctrl-R

Moves the cursor one page up with an overlap of one line, i.e. the cursor mo-
ves one screenful less one line backwards in the text.

Page down Ctrl-C

Moves the cursor one page down with an overlap of one line, i.e. the cursor
moves one screenful less one line forwards in the text.

1.8.5.2 Extended Movement Commands

The commands discussed above will let you move freely around in your pro-
gram text, and they are easy to learn and understand. Try to use them all for a
while and see how natural they feel.

Once you master them, you will probably sometimes want to move more
rapidly. The TURBO editor provides five commands to move rapidly to the ex-
treme ends of lines, to the beginning and end of the text, and to the last cursor
position.

These commands require two characters to be entered: first a Ctrl-Q and
then one of the following control characters: S, D, E, X, R, and C. They repeat
the pattern from before:

 E R
 S D
 X C

i.e. Ctrl-Q Ctrl-S moves the cursor to the extreme left of the line, and Ctrl-Q
Ctrl-D moves it to the extreme right of the line. Ctrl-Q Ctrl-E moves the cursor
to the top of the screen, Ctrl-Q Ctrl-X moves it to the bottom of the screen.
Ctrl-Q Ctrl-R moves the cursor all the way 'up' to the start of the file, Ctrl-Q
Ctrl-C moves it all the way 'down' to the end of the file.

24 TURBO Pascal Language Manual

Extended Movement Commands 1.8.5.2

To left on line Ctrl-Q Ctrl-S

Moves the cursor all the way to the left edge of the screen, i.e. to column one.

To right on line Ctrl-Q Ctrl-D

Moves the cursor to the end of the line, i.e. to the position following the last
printable character on the line. Trailing blanks are always removed from all li-
nes to preserve space.

To top of screen Ctrl-Q Ctrl-E

Moves the cursor to the top of the screen.

To bottom of screen Ctrl-Q Ctrl-X

Moves the cursor to the bottom of the screen.

To top of file Ctrl-Q Ctrl-R

Moves to the first character of the text.

To end of file Ctrl-Q Ctrl-C

Moves to the last character of the text.

Finally the Ctrl-Q prefix with a B, K, or P control character
allows you to jump far within the file:

To beginning of block Ctrl-Q Ctrl-B

Moves the cursor to the the position of the block begin marker set with Ctrl-K
Ctrl-B (hence the B). The command works even if the block is not displayed
(see hide/display block later), or the block end marker is not set.

To end of block Ctrl-Q Ctrl-K

Moves the cursor to the position of the block end marker set with Ctrl-K Ctrl-
K (hence the K). The command works even if the block is not displayed (see
hide/display block later), or the block begin marker is not set.

USING THE TURBO SYSTEM 25

1.8.5.2 Extended Movement Commands

To last cursor position Ctrl-Q Ctrl-P

Moves to the last position of the cursor (the P being a mnemonic for Posi-
tion). This command is particularly useful to move back to the last position af-
ter a Save operation or after a find or find/replace operation.

1.8.6 Insert and Delete Commands

These commands let you insert and delete characters, words, and lines. They
can be divided into three groups: one command which controls the text entry
mode (insert or overwrite), a number of simple commands, and one extended
command.

Notice that the editor provides a 'regret' facility which lets you
'undo' changes as long as you have not left the line. This command (Ctrl-Q
Ctrl-L) is described in section 1.8.8.

1.8.6.1 Insert or Overwrite?

Insert mode on/off Ctrl-V

When you enter text, you may choose between two entry modes: Insert and
Overwrite. Insert mode is the default value when the editor is invoked, and it
lets you insert new text into an existing text. The existing text to the right of
the cursor simply moves to the right while you enter the new text.

Overwrite mode may be chosen if you wish to replace old text with new text.
Characters entered then replace existing characters under the cursor.

You switch between these modes with the insert mode on/off command Ctrl-
V, and the current mode is displayed in the status line at the top of the screen.

26 TURBO Pascal Language Manual

Simple Insert/Delete Commands 1.8.6.2

1.8.6.2 Simple Insert/Delete Commands

Delete left character <DELETE>

Moves one character to the left and deletes the character there. Any cha-
racters to the right of the cursor move one position to the left. The <BACK-
SPACE> key which normally backspaces non-destructively like Ctrl-S may be
installed to perform this function if it is more conveniently located on your
keyboard, or if your keyboard lacks a <DELETE> key (sometimes labeled
, <RUBOUT>, or <RUB>). This command works across line breaks, i.e.
you can use it to remove line breaks.

Delete character under cursor Ctrl-G

Deletes the character under the cursor and moves any characters to the right
of the cursor one position to the left. This command does not work across line
breaks.

Delete right word Ctrl-T

Deletes the word to the right of the cursor. A word is defined as a sequence of
characters delimited by one of the following characters: |space| < > , ; . ()
[] ^ ' * + - / $. This command works across line breaks, i.e. it may be used to re-
move line breaks.

Insert line Ctrl-N

Inserts a line break at the cursor position. The cursor does not move.

Delete line Ctrl-Y

Deletes the line containing the cursor and moves any lines below one line up.
The cursor moves to the left edge of the screen. No provision exists to restore
a deleted line, so take care!

1.8.6.3 Extended Delete Command

One extended delete command is provided: a command to quickly erase from
the cursor position to the end of the line.

USING THE TURBO SYSTEM 27

1.8.6.3 Extended Delete Command

Delete to end of line Ctrl-Q Ctrl-Y

Deletes all text from the cursor position to the end of the line.

1.8.7 Block Commands

All block commands are extended commands (i.e. two characters each in the
standard command definition), and you may ignore them at first if you feel a
bit dazzled at this point. Later on, when you feel the need to move, delete, or
copy whole chunks of text, you should return to this section.

For the persevering, we'll go on and discuss the use of blocks.

A block of text is simply any amount of text, from a single character to several
pages of text. A block is marked by placing a Begin block marker at the first
character and an End block marker at the last character of the desired portion
of the text. Thus marked, the block may be copied, moved, deleted, and writ-
ten to a file. A command is available to read an external file into the text as a
block, and a special command conveniently marks a single word as a block.

Mark block begin Ctrl-K Ctrl-B

This command marks the beginning of a block. The marker itself is not visible
on the screen, and the block only becomes visibly marked when the End block
marker is set, and then only if the screen is installed to show some sort of
highlighting. But even if the block is not visibly marked, it is internally marked
and may be manipulated.

Mark block end Ctrl-K Ctrl-K

This command marks the end of a block. As above, the marker itself is not vi-
sible on the screen, and the block only becomes visibly marked when the Be-
gin block marker is also set.

Mark single word Ctrl-K Ctrl-T

This command marks a single word as a block, and thus replaces the Begin
block - End block sequence which is a bit clumsy when marking just one
word. If the cursor is placed within a word, then this word will be marked; if
not then the word to the left of the cursor will be marked. A word is defined as
a sequence of characters delimited by one of the following characters: |space|
< > , ; . () [] ^ ' * + - / $.

28 TURBO Pascal Language Manual

Block Commands 1.8.7

Hide/display block Ctrl-K Ctrl-H

This command causes the visual marking of a block (dim text) to be alterna-
tely switched off and on. Block manipulation commands (copy, move, delete,
and write to a file) work only when the block is displayed. Block related cursor
movements (jump to beginning/end of block) work whether the block is hid-
den or displayed.

Copy block Ctrl-K Ctrl-C

This command places a copy of a previously marked block starting at the cur-
sor position. The original block is left unchanged, and the markers are placed
around the new copy of the block. If no block is marked, the command per-
forms no operation, and no error message is issued.

Move block Ctrl-K Ctrl-V

This command moves a previously marked block from its original position to
the cursor position. The block disappears from its original position and the
markers remain around the block at its new position. If no block is marked,
the command performs no operation, and no error message is issued.

Delete block Ctrl-K Ctrl-Y

This command deletes the previously marked block. No provision exists to re-
store a deleted block, so take care!

Read block from disk Ctrl-K Ctrl-R

This command is used to read a file into the current text at the cursor position,
exactly as if it was a block that was moved or copied. The block read in is
marked as a block. When this command is issued, you are prompted for the
name of the file to read. The file specified may be any legal filename. If no file
type is specified, .PAS is automatically assumed: A file without type is speci-
fied as a name followed by a period.

USING THE TURBO SYSTEM 29

1.8.7 Block Commands

Write block to disk Ctrl-K Ctrl-W

This command is used to write a previously marked block to a file. The block
is left unchanged, and the markers remain in place. When this command is is-
sued, you are prompted for the name of the file to write to. If the file specified
already exists, a warning is issued before the existing file is overwritten. If no
block is marked, the command performs no operation, and no error message
is issued. The file specified may be any legal filename. If no file type is speci-
fied, .PAS is automatically assumed. A file without type is specified as a name
followed by a period. Avoid the use of file types .BAK, .CHN, and .COM/.CMD,
as they are used for special purposes by the TURBO system.

1.8.8 Miscellaneous Editing Commands

This section collects a number of commands which do not logically fall into
any of the above categories. They are nonetheless important, especially this
first one:

End edit Ctrl-K Ctrl-D

This command ends the edit and returns to the main menu. The editing has
been performed entirely in memory, and any associated disk file is not affec-
ted. Saving the edited file on disk is done explicitly with the Save command
from the main menu or automatically in connection with a compilation or
definition of a new Work file.

Tab Ctrl-I

There are no fixed tab positions in the TURBO editor. Instead, tab positions
are automatically set to the beginning of each word on the line immediately
above the cursor. This provides a very convenient automatic tabbing feature
especially useful in program editing where you often want to line up columns
of related items, e.g. variable declarations and such. Remember that Pascal
allows you to write extremely beautiful source texts - do it, not for the sake of
the purists, but more importantly to keep the program easy to understand,
especially when you return to make changes after some time.

30 TURBO Pascal Language Manual

Miscellaneous Editing Commands 1.8.8

Auto tab on/off Ctrl-Q Ctrl-I

The auto tab feature provides automatic indentation. When active, the inden-
tation of the current line is repeated on each following line, i.e. when you hit
<RETURN>, the cursor does not return to column one but to the starting co-
lumn of the line you just terminated. When you want to change the indenta-
tion, use any of the cursor right or left commands to select the new column.
When auto tab is active, the message Indent is displayed in the status line,
and when passive message is removed. Auto tab is active by default.

Restore line Ctrl-Q Ctrl-L

This command lets you regret changes made to a line as long as you have not
left the line. The line is simply restored to its original contents regardless of
what changes you have made. But only as long as you remain on the line; the
minute you leave it, changes are there to stay. For this reason, the Delete line
(Ctrl-Y) command can regrettably only be regretted, not restored. Some days
you'll find yourself continuously falling asleep on the Ctrl-Y key, with vast
consequences. A good long break usually helps.

Find Ctrl-Q Ctrl-F

The Find command lets you search for any string of up to 30 characters.
When you enter this command, the status line is cleared, and you are promp-
ted for a search string. Enter the string you are looking for and terminate with
<RETURN>. The search string may contain any characters, also control char-
acters. Control characters are entered into the search string with the Ctrl-P
prefix: enter e.g. a Ctrl-A by holding down the Control key while pressing first
P, then A. You may thus include a line break in a search string by specifying
Ctrl-M Ctrl-J. Notice that Ctrl-A has a special meaning: it matches any cha-
racter and may be used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right, Word
Left, and Word Right commands. Word Right recalls the previous search str-
ing which may then be edited. The search operation may be aborted with the
Abort command (Ctrl-U).

When the search string is specified, you are asked for search options. The fol-
lowing options are available:

USING THE TURBO SYSTEM 31

1.8.8 Miscellaneous Editing Commands

 B Search backwards, i.e. search from the current cursor position
 towards the beginning of the text.
 G Global search, i.e. search the entire text, irrespective of the cur-
 rent cursor position.
 n n = any number. Find the n'th occurrence of the search string,
 counted from the current cursor position.
 U Ignore upper/lower case, i.e. regard upper and lower case alpha-
 beticals as equal.
 W Search for whole words only, i.e. skip matching patterns which
 are embedded in other words.

Examples:
 W search for whole words only, i.e. the search string 'term' will only
 match the word 'term', not e.g. the word 'terminal'.
 BU search backwards and ignore upper/lower case, i.e. 'Block' will
 match both 'blockhead' and 'BLOCKADE', etc.
 125 Find the 125th occurrence of the search string.

Terminate the list of options (if any) with <RETURN>, and the search starts. If
the text contains a target matching the search string, the cursor is positioned
at the end of the target. The search operation may be repeated by the Repeat
last find command (Ctrl-L).

Find and replace Ctrl-Q Ctrl-A

The Find and Replace command lets you search for any string of up to 30
characters and replace it with any other string of up to 30 characters. When
you enter this command, the status line is cleared, and you are prompted for a
search string. Enter the string you are looking for and terminate with <RE-
TURN>. The search string may contain any characters, also control char-
acters. Control characters are entered into the search string with the Ctrl-P
prefix: enter e.g. a Ctrl-A by holding down the Control key while pressing first
P, then A. You may thus include a line break in a search string by specifying
Ctrl-M Ctrl-J. Notice that Ctrl-A has a special meaning: it matches any cha-
racter and may be used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right, Word
Left, and Word Right commands. Word Right recalls the previous search str-
ing which may then be edited. The search operation may be aborted with the
Abort command (Ctrl-U).

32 TURBO Pascal Language Manual

Miscellaneous Editing Commands 1.8.8

When the search string is specified, you are asked to enter the string to rep-
lace the search string. Enter up to 30 characters; control character entry and
editing is performed as above, but Ctrl-A has no special meaning in the rep-
lace string. If you just press <RETURN>, the target will be replaced with noth-
ing, i.e. deleted.

Finally you are prompted for options. The search and replace options are:

 B Search and replace backwards, i.e. search and replace from the
 current cursor position towards the beginning of the text.
 G Global search and replace, i.e. search and replace in the entire
 text, irrespective of the current cursor position.
 n n = any number. Find and replace n occurrences of the search
 string, counted from the current cursor position.
 N Replace without asking, i.e. do not stop and ask Replace (Y/N)?
 for each occurrence of the search string.
 U Ignore upper/lower case, i.e. regard upper and lower case alpha-
 beticals as equal.
 W Search and replace whole words only, i.e. skip matching patterns
 which are embedded in other words.

Examples:
 N10 Find the next ten occurrences of the search string and replace
 without asking.
 GWU Find and replace whole words in the entire text. Ignore upper/lo-
 wer case.

Terminate the list of options (if any) with <RETURN>, and the search and rep-
lace starts. Depending on the options specified, the string may be found.
When found (and if the N option is not specified), the cursor is positioned at
the end of the target, and you are asked the question: Replace (Y/N)? on
the prompt line at the top of the screen. You may abort
the search and replace operation at this point with the Abort command (Ctrl-
U). The search and replace operation may be repeated by the Repeat last find
command (Ctrl-L).

Repeat last find Ctrl-L

This command repeats the latest Find or Find and replace operation exactly as
if all information had been re-entered.

USING THE TURBO SYSTEM 33

1.8.8 Miscellaneous Editing Commands

Control character prefix Ctrl-P

The TURBO editor allows you to enter control characters into the file by pre-
fixing the desired control character with a Ctrl-P. If you e.g. want to enter a
Ctrl-G into a text string to ring the bell, you must first press Ctrl-P and then
Ctrl-G. Control characters are displayed as low-lighted (or inverse or what
have you) capital letters.

Abort operation Ctrl-U

 The Ctrl-U command lets you abort any command in progress whenever
pauses for input, like when Search and Replace asks Replace Y/N?, or during
entry of a search string or a file name (block Read and Write).

1.9 The TURBO editor vs. WordStar

Someone used to WordStar will notice that a few TURBO commands work
slightly differently, and although TURBO naturally only contains a subset of
WordStar's commands, it has been necessary to include some commands not
found in WordStar. These differences are discussed in this section.

1.9.1 Cursor Movement

 The cursor movement controls Ctrl-S, -D, -E, and -X move freely around
screen and do not jump to column one on empty lines. This does not mean
that the screen is full of blanks; on the contrary, all trailing blanks are automa-
ticaly deleted. This way of moving the cursor is especially useful e.g. when
matching indented begin - end pairs.

Ctrl-S and Ctrl-D do not work across line breaks. To move from one line to
another you must use Ctrl-E, Ctrl-X, Ctrl-A, or Ctrl-F.

1.9.2 Mark Single Word

Ctrl-K Ctrl-T is used to mark a single word as a block which is more conve-
nient than the two-step process of marking the beginning and the end of the
word separately.

34 TURBO Pascal Language Manual

End Edit 1.9.3

1.9.3 End Edit

The Ctrl-K Ctrl-D command has a different effect than in WordStar. As editing
in TURBO is done entirely in memory, this command does not change the file
on disk. This must be done explicitly with the Save command from the main
menu or automatically in connection with a compilation or definition of a new
Work file. TURBO's Ctrl-K Ctrl-D does not resemble WordStar's Ctrl-K Ctrl-Q
(quit edit) command either, as the changed text is not abandoned; it is left in
memory ready to be Compiled or Saved.

1.9.4 Line Restore

The Ctrl-Q Ctrl-L command restores a line to its contents before edit as long
as the cursor has not left the line.

1.9.5 Tabulator

No fixed tab settings are provided. Instead, tabs are automatically set to the
start of each word on the line immediately above the cursor.

1.9.6 Auto Indentation

The Ctrl-Q Ctrl-I command switches the auto indentation feature on and off.

USING THE TURBO SYSTEM 35

1.9.6 Auto Indentation

 Notes:

36 TURBO Pascal Language Manual

BASIC LANGUAGE ELEMENTS 2

 2. BASIC LANGUAGE ELEMENTS

2.1 Basic Symbols

The basic vocabulary of TURBO Pascal consists of basic symbols divided into
letters, digits, and special symbols:

 Letters: A to Z, a to z, and _ (underscore)
 Digits: 0 1 2 3 4 5 6 7 8 9
 Special symbols: + - * / = ^ < > ()
 [] { } . , : ; ' # $

No distinction is made between upper and lower case letters. Certain opera-
tors and delimiters are formed using two special symbols:

 Assignment operator: :=
 Relational operators: <> <= >=
 Subrange delimiter: ..
 Brackets: (. and .) may be used instead of [and]
 Comments: (* and *) may be used instead of { and }

2.2 Reserved Words

Reserved words are integral parts of TURBO Pascal and cannot be redefined.
Reserved words must thus never be used as user defined identifiers. The re-
served words are:

* absolute * external nil * shr
 and file not * string
 array for of then
 begin forward or to
 case function packed type
 const goto procedure until
 div if program var
 do in record while
 downto * inline repeat with
 else label set * xor
 end mod * shl

Throughout this manual, reserved words are written in boldface. The aste-
risks indicate reserved words not defined in standard Pascal.

BASIC LANGUAGE ELEMENTS 37

2.3 Standard Identifiers

2.3 Standard Identifiers

TURBO Pascal defines a number standard identifiers of predefined types,
constants, variables, procedures, and functions. Any of these identifiers may
be redefined but it will mean the loss of the facility offered by that particular
identifier and may lead to confusion. The following standard identifiers are
therefore best left to their special purposes:

 ArcTan Delay Ln Rename
 Assign Delete Lo Reset
 Aux EOF LowVideo Rewrite
 AuxInPtr EOLN Lst Round
 AuxOutPtr Erase LstOutPtr Seek
 BlockRead Execute Mark Sin
 BlockWrite Exp MaxInt SizeOf
 Boolean False Mem Sqr
 BufLen FilePos MemAvail Sqrt
 Byte FileSize Move Str
 Chain FillChar New Succ
 Char Flush NormVideo Swap
 Chr Frac Odd Text
 Close GetMem Ord Trm
 ClrEOL GotoXY Output True
 ClrScr HeapPtr Pi Trunc
 Con Hi Port UpCase
 ConInPtr IOresult Pos Usr
 ConOutPtr Input Pred UsrInPtr
 Concat InsLine Ptr UsrOutPtr
 ConstPtr Insert Random Val
 Copy Int Randomize Write
 Cos Integer Read Writeln
 CrtExit Kbd Readln
 CrtInit KeyPressed Real
 DelLine Length Release

Each TURBO Pascal implementation further contains a number of dedicated
standard identifiers which are listed in appendices A and B.

Throughout this manual, standard identifiers, like all other identifiers (see sec-
tion 4.1), are written in a combination of upper and lower case letters. In the
text (as opposed to program examples), they are furthermore printed in italics.

38 TURBO Pascal Language Manual

Delimiters 2.4

2.4 Delimiters

Language elements must be separated by at least one of the following deli-
miters: a blank, an end of line, or a comment.

2.5 Program lines

The maximum length of a program line is 127 characters; any character be-
yond the 127th is ignored by the compiler. For this reason the TURBO editor
allows only 127 characters on a line, but source code prepared with other edi-
tors may use longer lines. If such a text is read into the TURBO editor, line
breaks will be automatically inserted, and a warning is issued.

BASIC LANGUAGE ELEMENTS 39

2.5 Program lines

 Notes:

40 TURBO Pascal Language Manual

STANDARD SCALAR TYPES 3

 3. STANDARD SCALAR TYPES

A data type defines the set of values a variable may assume. Every variable in
a program must be associated with one and only one data type. Although
data types in TURBO Pascal can be quite sophisticated, they are all built from
simple (unstructured) types.

A simple type may either be defined by the programmer (it is then called a
declared scalar type), or be one of the standard scalar types: integer, real,
boolean, char, or byte. The following is a description of these five standard
scalar types.

3.1 Integer

Integers are whole numbers; in TURBO Pascal limited to a range of -32768
through 32767. Integers occupy two bytes in memory.

Overflow of integer arithmetic operations is not detected. Notice in particular
that partial results in integer expressions must be kept within the integer
range. For instance, the expression 1000 * 100 / 50 will not yield 2000, as
the multiplication causes an overflow.

3.2 Byte

The type Byte is a subrange of the type Integer, of the range 0..255. Bytes are
therefore compatible with integers, i.e. whenever a Byte value is expected, an
Integer value may be specified instead and vice versa. Furthermore, Bytes and
Integers may be mixed in expressions and Byte variables may be assigned in-
teger values. A variable of type Byte occupies one byte in memory.

STANDARD SCALAR TYPES 41

3.3 Real

3.3 Real

The range of real numbers is 1E-38 through 1E+38 with a mantissa of up to
11 significant digits. Reals occupy 6 bytes in memory.

Overflow during an arithmetic operation involving reals causes the program to
halt, displaying an execution error. An underflow will cause a result of zero.

Although the type real is included as a standard scalar type, the following dif-
ferences between reals and other scalar types should be noticed:

 1) The functions Pred and Succ cannot take real arguments.
 2) Reals cannot be used in array indexing.
 3) Reals cannot be used to define the base type of a set.
 4) Reals cannot be used in controlling for and case statements.
 5) Subranges of reals are not allowed.

3.4 Boolean

A boolean value can assume either of the logical truth values denoted by the
standard identifiers True and False. These are defined such that False < True.
A Boolean variable occupies one byte in memory.

3.5 Char

A Char value is one character in the ASCII character set. Characters are orde-
red according to their ASCII value, e.g. 'A'<'B'. The ordinal (ASCII) values of
characters range from 0 to 255. A Char variable occupies one byte in me-
mory.

42 TURBO Pascal Language Manual

USER DEFINED LANGUAGE ELEMENTS 4

 4. USER DEFINED LANGUAGE ELEMENTS

4.1 Identifiers

Identifiers are used to denote labels, constants, types, variables, procedures,
and functions. An identifier consists of a letter or underscore followed by any
combination of letters, digits, or underscores. An identifier is limited in length
only by the line length of 127 characters, and all characters are significant.

Examples:
 TURBO
 square
 persons_counted
 BirthDate
 3rdRoot illegal, starts with a digit
 Two Words illegal, must not contain a space

As TURBO Pascal does not distinguish between upper and lower case letters,
the use of mixed upper and lower case as in BirthDate has no functional mea-
ning. It is nevertheless encouraged as it leads to more legible identifiers. Ve-
ryLongIdentifier is easier to read for the human reader than VERYLONGIDEN-
TIFIER. This mixed mode will be used for all identifiers throughout this ma-
nual.

4.2 Numbers

Numbers are constants of integer type or of real type. Integer constants are
whole numbers expressed in either decimal or hexadecimal notation. Hexade-
cimal constants are identified by being preceded by a dollar-sign: $ABC is a
hexadecimal constant. The decimal integer range is -32768 thru 32767
and the hexadecimal integer range is $0000 through $FFFF.

Examples:
 1
 12345
 -1
 $123
 $ABC
 $123G illegal, G is not a legal hexadecimal digit
 1.2345 illegal as an integer, contains a decimal part

USER DEFINED LANGUAGE ELEMENTS 43

4.2 Numbers

The range of Real numbers is 1E-38 through 1E+38 with a mantissa of up to
11 significant digits. Exponential notation may be used, with the letter E pre-
ceding the scale factor meaning "times ten to the power of". An integer cons-
tant is allowed anywhere a real constant is allowed. Separators are not allo-
wed within numbers.

Examples:
 1.0
 1234.5678
 -0.012
 1E6
 2E-5
 -1.2345678901E+12
 1 legal, but it is not a real, it is an integer

4.3 Strings

A string constant is a sequence of characters enclosed in single quotes, i.e.:

 'This is a string constant '

A single quote may be contained in a string by writing two successive single
quotes. Strings containing only a single character are of the standard type
char. A string is compatible with an array of Char of the same length. All
string constants are compatible with all string types.

Examples:
 'TURBO'
 'You''ll see'
 ''''
 ';'
 ''

As shown in example 2 and 3, a single quote within a string is written as two
consecutive quotes. The four consecutive single quotes in example 3 thus
constitute a string containing one quote.

The last example - the quotes enclosing no characters, denoting the empty
string - is compatible only with string types.

44 TURBO Pascal Language Manual

Control Characters 4.3.1

4.3.1 Control Characters

TURBO Pascal also allows control characters to be embedded in strings. Two
notations for control characters are supported: 1) The # symbol followed by
an integer constant in the range 0..255 denotes a character of the corre-
sponding ASCII value, and 2) the ^ symbol followed by a character, denotes
the corresponding control character.

Examples:
 #10 ASCII 10 decimal (Line Feed).
 #$1B ASCII 1B hex (Escape).
 ^G Control-G (Bell).
 ^l Control-L (Form Feed). Notice that lower
 case is treated as upper case.
 ^[Control-[(Escape).

Sequences of control characters may be concatenated into strings by writing
them without separators between the individual characters:

 #l3#l0
 #27^U#20
 ^G^G^G^G

The above strings contain two, three, and four characters, respectively. Con-
trol characters may also be mixed with text strings:

 'Waiting for input! '^G^G^G' Please wake up'
 #27^U' '
 'This is another line of text '^M^J

These three strings contain 37, 3, and 31 characters, respectively.

4.4 Comments

A comment may be inserted anywhere in the program where a delimiter is le-
gal. It is delimited by the curly braces { and }, which may be replaced by the
symbols (* and *).

Examples:
 {This is a comment}
 (* and so is this *)

USER DEFINED LANGUAGE ELEMENTS 45

4.4 Comments

Curly braces may not be nested within curly braces, and (*..*) may not be
nested within (*..*). However, curly braces may nested within (*..*)
and vise versa, thus allowing entire sections of source code to be commented
away, even if they contain comments.

4.5 Compiler Directives

A number of features of the TURBO Pascal compiler are controlled through
compiler directives. A compiler directive is introduced as a comment with a
special syntax which means that whenever a comment is allowed in a pro-
gram, a compiler directive is also allowed.

A compiler directive consists of an opening brace immediately followed by a
dollar-sign immediately followed by one compiler directive letter or a list of
compiler directive letters separated by commas. The syntax of the directive or
directive list depends upon the directive(s) selected. A full description of each
of the compiler directives follow in the relevant sections; and a summary of
compiler directives is located in appendix E.

Examples:
 {$I-}
 ($I INCLUDE.FIL}
 {$R-,B+,V-}
 (*$X-*)

Notice that no spaces are allowed before or after the dollar-sign.

46 TURBO Pascal Language Manual

PROGRAM HEADING AND PROGRAM BLOCK 5

5. PROGRAM HEADING AND PROGRAM BLOCK

A Pascal program consists of a program heading followed by a program block.
The program block is further divided into a declaration part, in which all ob-
jects local to the program are defined, and a statement part, which specifies
the actions to be executed upon these objects. Each is described in detail in
the following.

5.1 Program Heading

In TURBO Pascal, the program heading is purely optional and of no signifi-
cance to the program. If present, it gives the program a name, and optionally
lists the parameters through which the program communicates with the envi-
ronment. The list consists of a sequence of identifiers enclosed in pa-
rentheses and separated by commas.

Examples:

 program Circles;
 program Accountant(Input,Output);
 program Writer(Input,Printer);

5.2 Declaration Part

The declaration part of a block declares all identifiers to be used within the
statement part of that block (and possibly other blocks within it). The declara-
tion part is divided into five different sections:

 1) Label declaration part
 2) Constant definition part
 3) Type definition part
 4) Variable declaration part
 5) Procedure and function declaration part

Whereas standard Pascal specifies that each section may only occur zero or
one time, and only in the above order, TURBO Pascal allows each of these
sections to occur any number of times in any order in the declaration part.

PROGRAM HEADING AND PROGRAM BLOCK 47

5.2.1 Label Declaration Part

5.2.1 Label Declaration Part

Any statement in a program may be prefixed with a label, enabling direct
branching to that statement by a goto statement. A label consists of a label
name followed by a colon. Before use, the label must be declared in a label
declaration part. The reserved word label heads this part, and it is followed by
a list of label identifiers separated by commas and terminated by a semi-
colon.

Example:
 label 10, error, 999, Quit;

Whereas standard Pascal limits labels to numbers of no more than 4 digits,
TURBO Pascal allows both numbers and identifiers to be used as labels.

5.2.2 Constant Definition Part

The constant definition part introduces identifiers as synonyms for constant
values. The reserved word const heads the constant definition part, and is
followed by a list of constant assignments separated by semi-colons. Each
constant assignment consists of an identifier followed by an equal sign and a
constant. Constants are either strings or numbers as defined in sections 4.2
and 4.3.

Example:
 const
 Limit = 255;
 Max = 1024;
 PassWord = 'SESAM';
 CursHome = ^['V';

The following constants are predefined in TURBO Pascal, i.e. they may be re-
ferenced without previous definition:

 Name: Type and value:
 Pi Real (3.1415926536E+00).
 False Boolean (the truth value false).
 True Boolean (the truth value true).
 Maxint Integer (32767).

As described in section 13, a constant definition part may also define typed
constants.

48 TURBO Pascal Language Manual

Type Definition Part 5.2.3

5.2.3 Type Definition Part

A data type in Pascal may be either directly described in the variable de-
claration part or referenced by a type identifier. Several standard type identi-
fiers are provided, and the programmer may create his own types through the
use of the type definition. The reserved word type heads the type definition
part, and it is followed by one or more type assignments separated by semi-
colons. Each type assignment consists of a type identifier followed by an
equal sign and a type.

Example:
 type
 Number = Integer;
 Day = (mon,tues,wed,thur,fri,sat,sun);
 List = array[1..10] of Real;

More examples of type definitions are found in subsequent sections.

5.2.4 Variable Declaration Part

Every variable occurring in a program must be declared before use. The de-
claration must textually precede any use of the variable, i.e. the variable must
be 'known' to the compiler before it can be used.

A variable declaration consists of the reserved word var followed by one or
more identifier(s), separated by commas, each followed by a colon and a
type. This creates a new variable of the specified type and
associates it with the specified identifier.

The 'scope' of this identifier is the block in which it is defined, and any block
within that block. Note, however, that any such block within another block
may define another variable using the same identifier. This variable is said to
be local to the block in which it is declared (and any blocks within that block),
and the variable declared on the outer level (the global variable) becomes
inaccessible.

Example:
 var
 Result, Intermediate, SubTotal: Real;
 I, J, X, Y: Integer;
 Accepted, Valid: Boolean;
 Period: Day;
 Buffer: array[0..127] of Byte;

PROGRAM HEADING AND PROGRAM BLOCK 49

5.2.5 Procedure and Function Declaration Part

5.2.5 Procedure and Function Declaration Part

A procedure declaration serves to define a procedure within the current pro-
cedure or program (see section 16.2). A procedure is activated from a proce-
dure statement (see section 7.1.2), and upon completion, program execution
continues with the statement immediately following the calling statement.

A function declaration serves to define a program part which computes and
returns a value (see section 16.3). A function is activated when its designator
is met as part of an expression (see section 6.2).

5.3 Statement Part

The statement part is the last part of a block. It specifies the actions to be ex-
ecuted by the program. The statement part takes the form of a compound
statement followed by a period or a semi-colon. A compound statement con-
sists of the reserved word begin, followed by a list of statements separated
by semicolons, terminated by the reserved word end.

50 TURBO Pascal Language Manual

EXPRESSIONS 6

 6. EXPRESSIONS

Expressions are algorithmic constructs specifying rules for the computation of
values. They consist of operands, i.e. variables, constants, and function
designators, combined by means of operators as defined in the following.

This section describes how to form expressions from the standard scalar ty-
pes Integer, Real, Boolean, and Char. Expressions containing declared scalar
types, String types, and Set types are described in sections 8.1, 9.2, and 12.2
respectively.

6.1 Operators

Operators fall into five categories, denoted by their order of precedence:

 1) Unary minus (minus with one operand only).
 2) Not operator,
 3) Multiplying operators: *, / , div, mod, and, shl and shr.
 4) Adding operators: +, -, or, and xor.
 5) Relational operators: =, <>, <, >, <=, >=, and in.

Sequences of operators of the same precedence are evaluated from left to
right. Expressions within parentheses are evaluated first and independently of
preceding or succeeding operators.

If both of the operands of the multiplying and adding operators are of type In-
teger, then the result is of type Integer. If one (or both) of the operands is of
type Real, then the result is also of type Real.

6.1.1 Unary Minus

The unary minus denotes a negation of its operand which may be of Real or
Integer types.

EXPRESSIONS 51

6.1.2 Not Operator

6.1.2 Not Operator

The not operator negates (inverses) the logical value of its Boolean operand:

 not True = False
 not False = True

TURBO Pascal also allows the not operator to be applied to an Integer ope-
rand, in which case bitwise negation takes place.

Examples:
 not 0 = -1
 not -15 = 14
 not $2345 = $DCBA

6.1.3 Multiplying Operators

Operator Operation Type of operands Type of result

* multiplication Real Real
* multiplication Integer Integer
* multiplication Real, Integer Real
/ division Real, Integer Real
/ division Integer Real
/ division Real Real
div Integer division Integer Integer
mod modulus Integer Integer
and arithmetic and Integer Integer
and logical and Boolean Boolean
shl shift left Integer Integer
shr shift right Integer Integer

Examples:

 12 * 34 = 408
 123 / 4 = 30.75
 123 div 4 = 30
 12 mod 5 = 2
 True and False = False
 12 and 22 = 4
 2 shl 7 = 256
 256 shr 7 = 2

52 TURBO Pascal Language Manual

Adding Operators 6.1.4

6.1.4 Adding Operators

Operator Operation Type of operands Type of result

+ addition Real Real
+ addition Integer Integer
+ addition Real, Integer Real
- subtraction Real Real
- subtraction Integer Integer
- subtraction Real, Integer Real
or arithmetic or Integer Integer
or logical or Boolean Boolean
xor arithmetic xor Integer Integer
xor logical xor Boolean Boolean

Examples:
 123+456 = 579
 456-123.0 = 333.0
 True or False = True
 12 or 22 = 30
 True xor False = True
 12 xor 22 = 26

6.1.5 Relational Operators

The relational operators work on all standard scalar types: Real, Integer, Boo-
lean, Char, and Byte. Operands of type Integer, Real, and Byte may be mixed.
The type of the result is always Boolean, i.e. True or False.

 = equal to
 <> not equal to
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to

Examples:
 a = b true if a is equal to b.
 a <> b true if a is not equal to b.
 a > b true if a is greater than b.
 a < b true if a is less than b.
 a >= b true if a is greater than or equal to b.
 a <= b true if a is less than or equal to b.

EXPRESSIONS 53

6.2 Function Designators

6.2 Function Designators

A function designator is a function identifier optionally followed by a pa-
rameter list, which is one or more variables or expressions separated by com-
mas and enclosed in parentheses. The occurrence of a function designator
causes the function with that name to be activated. If the function is not one
of the pre-defined standard functions, it must be declared before activation.

Examples:
 Round(PlotPos)
 Writeln(Pi * (Sqr(R)))
 (Max(X,Y) < 25) and (Z > Sqrt(X * Y))
 Volume(Radius,Height)

54 TURBO Pascal Language Manual

STATEMENTS 7

 7. STATEMENTS

The statement part defines the action to be carried out by the program (or
subprogram) as a sequence of statements; each specifying one part of the ac-
tion. In this sense Pascal is a sequential programming language: statements
are executed sequentially in time; never simultaneously. The statement part is
enclosed by the reserved words begin and end and within it, statements are
separated by semi-colons. Statements may be either simple or structured.

7.1 Simple Statements

Simple statements are statements which contain no other statements. These
are the assignment statement, procedure statement, goto statement, and
empty statement.

7.1.1 Assignment Statement

The most fundamental of all statements is the assignment statement. It is
used to specify that a certain value is to be assigned to a certain variable. An
assignment consists of a variable identifier followed by the assignment opera-
tor := followed by an expression.

Assignment is possible to variables of any type (except files) as long as the
variable (or the function) and the expression are of the same type. As an ex-
ception, if the variable is of type Real, the type of the expression may be Inte-
ger.

Examples:
 Angle := Angle * Pi;
 AccessOK := False;
 Entry := Answer = PassWord;
 SphereArea := 4 * Pi * R * R;

STATEMENTS 55

7.1.2 Procedure Statement

7.1.2 Procedure Statement

A procedure statement serves to activate a previously defined user-defined
procedure or a pre-defined standard procedure. The statement consists of a
procedure identifier, optionally followed by a parameter list, which is a list of
variables or expressions separated by commas and enclosed in parentheses.
When the procedure statement is encountered during program execution,
control is transferred to the named procedure, and the value of possible para-
meters are transferred to the procedure. When the procedure finishes, pro-
gram execution continues from the statement following the procedure state-
ment.

Examples:
 Find(Name,Address);
 Sort(Address);
 Uppercase(Text);
 UpdateCustFile(CustRecord);

7.1.3 Goto Statement

A goto statement consists of the reserved word goto followed by a label
identifier. It serves to transfer further processing to that point in the program
text which is marked by the label. The following rules should be observed
when using goto statements:

1) Before use, labels must be declared. The declaration takes place in a label
declaration in the declaration part of the block in which the label is used.
2) The scope of a label is the block in which it is declared. It is thus not pos-
sible to jump into or out of procedures and functions.

7.1.4 Empty Statement

An 'empty' statement is a statement which consists of no symbols, and which
has no effect. It may occur whenever the syntax of Pascal requires a state-
ment but no action is to take place.

Examples:
 begin end.
 while Answer <> '' do;
 repeat until KeyPressed; {wait for any key to be hit}

56 TURBO Pascal Language Manual

Structured Statements 7.2

7.2 Structured Statements

Structured statements are constructs composed of other statements which
are to be executed in sequence (compound statements), conditionally
(conditional statements), or repeatedly (repetitive statements). The discussion
of the with statement is deferred to section 11.2.

7.2.1 Compound Statement

A compound statement is used if more than one statement is to be executed
in a situation where the Pascal syntax allows only one statement to be speci-
fied. It consists of any number of statements separated by semi-colons and
enclosed within the reserved words begin and end, and specifies that the
component statements are to be executed in the sequence in which they are
written.

Example:
 if Small > Big then
 begin
 Tmp := Small;
 Small := Big;
 Big := Tmp;
 end;

7.2.2 Conditional Statements

A conditional statement selects for execution a single one of its component
statements.

7.2.2.1 If Statement

The if statement specifies that a statement be executed only if a certain con-
dition (Boolean expression) is true. If it is false, then either no statement or
the statement following the reserved word else is to be executed. Notice that
else must not be preceded by a semi-colon.

STATEMENTS 57

7.2.2.1 If Statement

The syntactic ambiguity arising from the construct:

 if expr1 then
 if expr2 then
 stmt1
 else
 stmt2

is resolved by interpreting the construct as follows:

 if expr1 then
 begin
 if expr2 then
 stmt1
 else
 stmt2
 end

i.e., the else-clause part belongs generally to the last if statement which has
no else part.

Examples:
 if Interest > 25 then
 Usury := True
 else
 TakeLoan := OK;

 if (Entry < 0) or (Entry > 100) then
 begin
 Write('Range is 1 to 100, please re-enter: ');
 Read(Entry);
 end;

7.2.2.2 Case Statement

The case statement consists of an expression (the selector) and a list of sta-
tements, each preceded by a case label of the same type as the selector. It
specifies that the one statement be executed whose case label is equal to the
current value of the selector. If none of the case labels contain the value of the
selector, then either no statement is executed, or, optionally, the statements
following the reserved word else are executed. The else clause is an expan-
sion of standard Pascal.

58 TURBO Pascal Language Manual

Case Statement 7.2.2.2

A case label consists of any number of constants or subranges separated by
commas followed by a colon. A subrange is written as two constants sepa-
rated by the subrange delimiter '..'. The type of the constants must be the
same as the type of the selector. The statement following the case label is
executed if the value of the selector equals one of the constants or if it lies
within one of the subranges.

Valid selector types are all simple types, i.e. all scalar types except real.

Examples:
 case Operator of
 '+': Result := Answer + Result;
 '-': Result := Answer - Result;
 '*': Result := Answer * Result;
 '/': Result := Answer / Result;
 end;

 case Year of
 Min..1939: begin
 Time := PreWorldWar2;
 Writeln('The world at peace...');
 end;
 1946..Max: begin
 Time := PostWorldWar2
 Writeln('Building a new world.');
 end;
 else
 Time := WorldWar2;
 Writeln('We are at war');
 end;

7.2.3 Repetitive Statements

Repetitive statements specify that certain statements are to be executed re-
peatedly. If the number of repetitions is known beforehand, i.e. before the re-
petitions are started, the for statement is the appropriate construct to express
this situation. Otherwise the while or the repeat statement should be used.

STATEMENTS 59

7.2.3.1 For Statement

7.2.3.1 For Statement

The for statement indicates that the component statement is to be repeated-
ly executed while a progression of values is assigned to a variable which is
called the control variable. The progression can be ascending: to or descend-
ing: downto the final value.

The control variable, the initial value, and the final value must all be of the
same type. Valid types are all simple types, i.e. all scalar types except real.
If the initial value is greater than the final value when using the to clause, or if
the initial value is less than the final value when using the downto clause, the
component statement is not executed at all.

Examples:
 for I := 2 to 100 do if A[I] > Max then Max := A[I];

 for I := 1 to NoOfLines do
 begin
 Readln(Line);
 if Length(Line) < Limit then ShortLines := ShortLines + 1
 else
 LongLines := LongLines + 1
 end;

Notice that the component statement of a for statement must not contain as-
signments to the control variable. If the repetition is to be terminated before
the final value is reached, a goto statement must be used, although such
constructs are not recommended - it is better programming practice to use a
while or a repeat statement instead.

Upon completion of a for statement, the control variable equals the final va-
lue, unless the loop was not executed at all, in which case no assignment is
made to the control variable.

60 TURBO Pascal Language Manual

While statement 7.2.3.2

7.2.3.2 While statement

The expression controlling the repetition must be of type Boolean. The sta-
tement is repeatedly executed as long as expression is True. If its value is
false at the beginning, the statement is not executed at all.

Examples:
 while Size > 1 do Size := Sqrt(Size);

 while ThisMonth do
 begin
 ThisMonth := CurMonth = SampleMonth;
 Process;
 {process this sample by the Process procedure}
 end;

7.2.3.3 Repeat Statement

The expression controlling the repetition must be of type Boolean. The se-
quence of statements between the reserved words repeat and until is execu-
ted repeatedly until the expression becomes true. As opposed to the while
statement, the repeat statement is always executed at least once, as evalua-
tion of the condition takes place at the end of the loop.

Example:
 repeat
 Write(^M,'Delete this item? (Y/N)');
 Read(Answer);
 until UpCase(Answer) in ['Y','N'];

STATEMENTS 61

7.2.3.3 Repeat Statement
 Notes:

62 TURBO Pascal Language Manual

SCALAR AND SUBRANGE TYPES 8

 8. SCALAR AND SUBRANGE TYPES

The basic data types of Pascal are the scalar types. Scalar types constitute a
finite and linear ordered set of values. Although the standard type Real is in-
cluded as a scalar type, it does not conform to this definition. Therefore, Reals
may not always be used in the same context as other scalar types.

8.1 Scalar Type

Apart from the standard scalar types (Integer, Real, Boolean, Char, and Byte),
Pascal supports user defined scalar types, also called declared scalar types.
The definition of a scalar type specifies, in order, all of its possible values. The
values of the new type will be represented by identifiers, which will be the
constants of the new type.

Examples:
 type
 Operator = (Plus,Minus,Multi,Divide);
 Day = (Mon,Tues,Wed,Thur,Fri,Sat,Sun);
 Month = (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec);
 Card = (Club,Diamond,Heart,Spade);

Variables of the above type Card can assume one of four values, namely Club,
Diamond, Heart, or Spade. You are already acquainted with the standard sca-
lar type Boolean which is defined as:

 type
 Boolean = (False,True);

The relational operators =, <>, >, <, >=, and <= can be applied to all
scalar types, as long as both operands are of the same type (reals and inte-
gers may be mixed). The ordering of the scalar type is used as the basis of the
comparison, i.e. the order in which the values are introduced in the type
definition. For the above type Card, the following is true:

Club < Diamond < Heart < Spade

SCALAR AND SUBRANGE TYPES 63

8.1 Scalar Type

The following standard functions can be used with arguments of scalar type:

 Succ(Diamond) The successor of Diamond (Heart).
 Pred(Diamond) The predecessor of Diamond (Club).
 Ord(Diamond) The ordinal value of Diamond (1 [as the ordinal
 value of the first value of a scalar type is 0]).

The result type of Succ and Pred is the same as the argument type. The re-
sult type of Ord is Integer.

8.2 Subrange Type

A type may be defined as a subrange of another already defined scalar type.
Such types are called subranges. The definition of a subrange simply speci-
fies the least and the largest value in the subrange. The first constant specifies
the lower bound and must not be greater than the second constant, the upper
bound. A subrange of type Real is not allowed.

Examples:
 type
 HemiSphere = (North, South, East, West);
 World = (East, West)
 CompassRange = 0..360;
 Upper = 'A'..'Z';
 Lower = 'a'..'z';
 Degree = (Celc, Fahr, Ream, Kelv);
 Wine = (Red, White, Rose, Sparkling);

The type World is a subrange of the scalar type HemiSphere (called the asso-
ciated scalar type). The associated scalar type of CompassRange is Integer,
and the associated scalar type of Upper and Lower is Char.

You already know the standard subrange type Byte, which is defined as:

type
 Byte = 0..255;

A subrange type retains all the properties of its associated scalar type, being
restricted only in its range of values.

64 TURBO Pascal Language Manual

Subrange Type 8.2

The use of defined scalar types and subrange types is strongly recommended
as it greatly improves the readability of programs. Furthermore, run time
checks are included in the program code (see section 8.4) to verify the values
assigned to defined scalar variables and subrange variables. Another advan-
tage of defined types and subrange types is that they often save memory.
TURBO Pascal allocates only one byte of memory for variables of a defined
scalar type or a subrange type with a total number of elements less than 256.
Similarly, integer subrange variables, where lower and upper bounds are both
within the range 0 through 255, occupy only one byte of memory.

8.3 Type Conversion

The Ord function may be used to convert scalar types into values of type inte-
ger. Standard Pascal does not provide a way to reverse this process, i.e. a way
of converting an integer into a scalar value.

In TURBO Pascal, a value of a scalar type may be converted into a value of
another scalar type, with the same ordinal value, by means of the Retype faci-
lity. Retyping is achieved by using the type identifier of the desired type as a
function designator followed by one parameter enclosed in parentheses. The
parameter may be a value of any scalar type except Real. Assuming the type
definitions in sections 8.1 and 8.2, then:

 Integer(Heart) = 2
 Month(10) = Nov
 HemiSphere(2) = East
 Upper(14) = 'O'
 Degree(3) = Kelv
 Char(78) = 'N'
 Integer('7') = 55

8.4 Range Checking

The generation of code to perform run-time range checks on scalar and sub-
range variables is controlled with the R compiler directive. The default setting
is {$R-}, i.e. no checking is performed. When an assignment is made to a sca-
lar or a subrange variable while this directive is active ({$R+}), assignment
values are checked to be within range. It is recommended to use this setting
as long as a program is not fully debugged.

SCALAR AND SUBRANGE TYPES 65

8.4 Range Checking

Example:
 program Rangecheck;
 type
 Digit = 0..9;
 Var
 Dig1,Dig2,Dig3: digit;
 begin
 Dig1 := 5; {valid}
 Dig2 := Dig1 + 3; {valid as Dig1 + 3 <= 9}
 Dig3 := 47; {invalid but causes no error}
 {$R+} Dig3 := 55; {invalid and causes a run time error}
 {$R-} Dig3 := 167; {invalid but causes no error}
end.

66 TURBO Pascal Language Manual

STRING TYPE 9

9. STRING TYPE

TURBO Pascal offers the convenience of string types for processing of cha-
racter strings, i.e. sequences of characters. String types are structured types,
and are in many ways similar to array types (see section 10). There is, howe-
ver, one major difference between these: the number of characters in a string
(i.e. the length of the string) may vary dynamically between 0 and a specified
upper limit, whereas the number of elements in an array is fixed.

9.1 String Type Definition

The definition of a string type must specify the maximum number of charac-
ters it can contain, i.e. the maximum length of strings of that type. The defini-
tion consists of the reserved word string followed by the maximum length
enclosed in square brackets. The length is specified by an integer constant in
the range 1 through 255. Notice that strings do not have a default length; the
length must always be specified.

Example:
 type
 FileName = string[14];
 ScreenLine = string[80];

String variables occupy the defined maximum length in memory plus one byte
which contains the current length of the variable. The individual characters
within a string are indexed from 1 through the length of the string.

9.2 String Expressions

Strings are manipulated by the use of string expressions. String expressions
consist of string constants, string variables, function designators, and opera-
tors.

The plus-sign may be used to concatenate strings. The Concat function (see
section 9.5) performs the same function, but the + operator is often more
convenient. If the length of the result is greater than 255, a run-time error oc-
curs.

STRING TYPE 67

9.2 String Expressions

Example:
 'TURBO ' + 'Pascal' = 'TURBO Pascal'
 '123' + '.' + '456' = '123.456'
 'A' + 'B' + 'C' + 'D ' = 'ABCD'

The relational operators =, <>, >, <, >=, and <= are lower in precedence
than the concatenation operator. When applied to string operands, the re-
sult is a Boolean value (True or False). When comparing two strings, single
characters are compared from the left to the right. If the strings are of
different length, but equal up to and including the last character of the
shortest string, then the shortest string is considered the smaller.
Strings are equal only if their lengths as well as their contents are iden-
tical.

Examples:
 'A' < 'B' is true
 'A' > 'b' is false
 '2' < '12' is false
 'TURBO' = 'TURBO' is true
 'TURBO ' = 'TURBO' is false
 'Pascal Compiler' < 'Pascal compiler' is true

9.3 String Assignment

The assignment operator is used to assign the value of a string expression
to a string variable.

Example:
 Age := 'fiftieth';
 Line := 'Many happy returns on your ' + Age + ' birthday.';

If the maximum length of a string variable is exceeded (by assigning too
many characters to the variable), the exceeding characters are truncated.
E.g., if the variable Age above was declared to be of type string[5], then
after the assignment, the variable will only contain the five leftmost
characters: 'fifti'.

68 TURBO Pascal Language Manual

String Procedures 9.4

9.4 String Procedures

The following standard string procedures are available in TURBO Pascal:

9.4.1 Delete

Syntax: Delete(St, Pos, Num)

Delete removes a substring containing Num characters from St starting at
position Pos. St is a string variable and both Pos and Num are integer
expressions. If Pos is greater than Length(St), no characters are
removed. If an attempt is made to delete characters beyond the end of the
string (i.e. Pos + Num exceeds the length of the string), only characters
within the string are deleted. If Pos is outside the range 1..255, a run
time error occurs.

If St has the value 'ABCDEFG' then:
 Delete(St,2,4) will give St the value 'AFG'.
 Delete(St,2,10) will give St the value 'A'.

9.4.2 Insert

Syntax: Insert(Obj, Target, Pos)

Insert inserts the string Obj into the string Target at the position Pos.
Obj is a string expression, Target is a string variable, and Pos is an in-
teger expression. If Pos is greater than Length(Target), then Obj is
concatenated to Target. If the result is longer than the maximum length of
Target, then excess characters will be truncated and Target will only
contain the leftmost characters. If Pos is outside the range 1..255, a run
time error occurs.

If St has the value 'ABCDEFG' then:
 Insert('XX',St,3) will give St the value 'ABXXCDEFG'

STRING TYPE 69

9.4.3 Str

9.4.3 Str

Syntax: Str(Value, St)

The Str procedure converts the numeric value of Value into a string and
stores the result in St. Value is a write parameter of type integer or of
type real, and St is a string variable. Write parameters are expres-
sions with special formatting commands (see section 14.6.3).

If I has the value 1234 then:
 Str(I:5,St) gives St the value ' 1234'.

If X has the value 2.5E4 then:
 Str(X:10:0,St) gives St the value ' 2500'.

8-bit systems only: a function using the Str procedure must never be called
by an expression in a Write or Writeln statement.

9.4.4 Val

Syntax: Val(St, Var, Code)

Val converts the string expression St to an integer or a real value (de-
pending on the type of the variable Var) and stores this value in Var. St
must be a string expressing a numeric value according to the rules applying
to numeric constants (see section 4.2). Neither leading nor trailing spaces
are allowed. Var must be an Integer or a Real variable and Code must be an
integer variable. If no errors are detected, the variable Code is set to 0.
Otherwise Code is set to the position of the first character in error, and
the value of Var is undefined.

If St has the value '234' then:
 Val(St,I,Result) gives I the value 234 and Result the value 0

If St has the value '12x' then:
 Val(St,I,Result) gives I an undefined value and Result the value 3

If St has the value '2.5E4', and X is a Real variable, then:
 Val(St,X,Result) gives X the value 2500 and Result the value 0

8-bit Systems only: a function using the Var procedure must never be called
by an expression in a Write or Writeln statement.

70 TURBO Pascal Language Manual

String Functions 9.5

9.5 String Functions

The following standard string functions are available in TURBO Pascal:

9.5.1 Copy

Syntax: Copy(St, Pos, Num)

Copy returns a substring containing Num characters from St starting at po-
sition Pos. St is a string expression and both Pos and Num are integer
expressions. If Pos exceeds the length of the string, the empty string is
returned. If an attempt is made to get characters beyond the end of the
string (i.e. Pos + Num exceeds the length of the string), only the charac-
ters within the string are returned. If Pos is outside the range 1..255, a
run time error occurs.

If St has the value 'ABCDEFG' then:
 Copy(St,3,2) returns the value 'CD'
 Copy(St,4,10) returns the value 'DEFG'
 Copy(St,4,2) returns the value 'DE'

9.5.2 Concat

Syntax: Concat(St1, St2 {, StN})

The Concat function returns a string which is the concatenation of its
arguments in the order in which they are specified. The arguments may be
any number of string expressions separated by commas (St1, St2 .. StN).
If the length of the result is greater than 255, a run-time error occurs.
As explained in section 9.3, the + operator can be used to obtain the same
result, often more conveniently. Concat is included only to maintain compa-
tibility with other Pascal compilers.

If St1 has the value 'TURBO' and St2 the value 'is fastest' then:

 Concat(St1,' PASCAL ',St2)

returns the value 'TURBO PASCAL is fastest'

STRING TYPE 71

9.5.3 Length

9.5.3 Length

Syntax: Length(St)

Returns the length of the string expression St, i.e. the number of charac-
ters in St. The type of the result is integer.

If St has the value '123456789' then:
 Length(St) returns the value 9

9.5.4 Pos

Syntax: Pos(Obj, Target)

The Pos function scans the string Target to find the first occurrence of
Obj within Target. Obj and Target are string expressions, and the type of
the result is integer. The result is an integer denoting the position
within Target of the first character of the matched pattern. The position
of the first character in a string is 1. If the pattern is not found, Pos
returns 0.

If St has the value 'ABCDEFG' then
 Pos('DE',St) returns the value 4
 Pos('H',St) returns the value 0

72 TURBO Pascal Language Manual

Strings and Characters 9.6

9.6 Strings and Characters

String types and the standard scalar type Char are compatible. Thus, when-
ever a string value is expected, a char value may be specified instead and vice
versa. Furthermore, strings and characters may be mixed in expressions.
When a character is assigned a string value, the length of the string must be
exactly one; otherwise a run-time error occurs.

The characters of a string variable may be accessed individually through
string indexing. This is achieved by appending an index expression of type
integer, enclosed in square brackets, to the string variable.

Examples:
 Buffer[5]
 Line[Length(Line)-1]
 Ord(Line[0])

As the first character of the string (at index 0) contains the length of the
string, Length(String) is the same as Ord(String[0]). If assignment is
made to the length indicator, it is the responsibility of the programmer to
check that it is less than the maximum length of the string variable. When the
range check compiler directive R is active ({$R+}), code is generated which
insures that the value of a string index expression does not exceed the
maximum length of the string variable. It is, however, still possible to index a
string beyond its current dynamic length. The characters thus read are
random, and assignments beyond the current length will not affect the actual
value of the string variable.

STRING TYPE 73

9.6 Strings and Characters

 Notes:

74 TURBO Pascal Language Manual

ARRAY TYPE 10

 10. ARRAY TYPE

An array is a structured type consisting of a fixed number of components
which are all of the same type, called the component type or the base type.
Each component can be explicitly accessed by indices into the array. Indices
are integer expressions within square brackets suffixed to the array identifier,
and their type is called the index type.

10.1 Array Definition

The definition of an array consists of the reserved word array followed by
the index type, enclosed in square brackets, followed by the reserved word of,
followed by the component type.

Examples:
 type
 Day = (Mon,The,Wed,Thu,Fri,Sat,Sun)
 Var
 WorkHour : array[1..8] of Integer;
 Week : array[1..7] of Day;

 type
 Players = (Player1,Player2,Player3,Player4);
 Hand = (One,Two,Pair,TwoPair,Three,Straight,
 Flush,FullHouse,Four,StraightFlush,RSF);
 LegalBid = 1..200;
 Bid = array[Players] of LegalBid;
 Var
 Player : array[Players] of Hand;
 Pot : Bid;

An array component is accessed by suffixing an index enclosed in square
brackets to the array variable identifier:

 Player[Player3] := FullHouse;
 Pot[Player3] := 100;
 Player[Player4] := Flush;
 Pot[Player4] := 50;

ARRAY TYPE 75

10.1 Array Definition

As assignment is allowed between any two variables of identical type, entire
arrays can be copied with a single assignment statement.

The R compiler directive controls the generation of code which will perform
range checks on array index expressions at run-time. The default mode is pas-
sive, i.e. {$R-}, and the {$R+} setting causes all index expressions to be
checked against the limits of their index type.

10.2 Multidimensional Arrays

The component type of an array may be any data type, i.e. the component
type may be another array. Such a structure is called a multidimensional ar-
ray.

Example:
 type
 Card = (Two,Three,Four,Five,Six,Seven,Eight,Nine,
 Ten, Knight,Queen,King,Ace);
 Suit = (Hearts,Spade,Clubs,Diamonds);
 AllCards = array[Suit] of array[1..13] of Card;
 Var
 Deck: AllCards;

A multidimensional array may be defined more conveniently by specifying the
multiple indices thus:

type
 AllCards = array[Suit,1..13] of Card;

A similar abbreviation may be used when selecting an array component:

 Deck[Hearts,10] is equivalent to Deck[Hearts][10]

It is, of course, possible to define multidimensional arrays in terms of pre-
viously defined array types.

76 TURBO Pascal Language Manual

Multidimensional Arrays 10.2

Example:
 type
 Pupils = string[10];
 Class = array[1..30] of Pupils;
 School = array[1..100] of Class;
 Var
 J,P,Vacant : Integer
 ClassA,
 ClassB : Class;
 NewTownSchool : School;

After these definitions, all of the following assignments are legal:

 ClassA[J] := 'Peter';
 NewTownSchool[5][21] := 'Peter Brown';
 NewTownSchool[8,J] := NewTownSchool[7,J]; {pupil no. J changed class}
 ClassA[Vacant] := ClassB[P]; {pupil no. P changes Class and number}

10.3 Character Arrays

Character arrays are arrays with one index and components of the standard
scalar type Char. Character arrays may be thought of as strings with a con-
stant length.

In TURBO Pascal, character arrays may participate in string expressions, in
which case the array is converted into a string of the length of the array. Thus,
arrays may be compared and manipulated in the same way as strings, and
string constants may be assigned to character arrays, as long as they are of
the same length. String variables and values computed from string expres-
sions cannot be assigned to character arrays.

10.4 Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem and
Port which are used to access CPU memory and data ports. These are
discussed in appendices A and B.

ARRAY TYPE 77

10.4 Predefined Arrays

 Notes:

78 TURBO Pascal Language Manual

RECORD TYPE 11

 11. RECORD TYPE

A record is a structure consisting of a fixed number of components, called
fields. Fields may be of different type and each field is given a name, the field
identifier, which is used to select it.

11.1 Record Definition

The definition of a record type consists of the reserved word record suc-
ceeded by a field list and terminated by the reserved word end. The field list is
a sequence of record sections separated by semi-colons, each consisting of
one or more identifiers separated by commas and terminated by a colon and a
type identifier. Each record section thus specifies the type and identifier for
one or more fields.

Example:
 type
 Date = record
 Day: 1..31;
 Month: (Jan,Feb,Mar,Apr,May,Jun,
 July,Aug,Sep,Oct,Nov,Dec);
 Year: 1900..1999;
 end;
 Var
 Birth: Date;
 WorkDay: array[1..5] of date;

Day, Month, and Year are field identifiers. A field identifier must be unique
only within the record in which it is defined. A field is referenced by the va-
riable identifier and the field identifier separated by a period.

Examples:

 Birth.Month := Jun;
 Birth.Year := 1950;
 WorkDay[Current] := WorkDay[Current-1];

Note that, similar to array types, assignment is allowed between entire
records of identical types. As record components may be of any type, con-
structs like the following record of records of records are possible:

RECORD TYPE 79

11.1 Record Definition

type
 Name = record
 FamilyName: string[32];
 ChristianNames: array[1..3] of string[16];
 end;
 Rate = record
 NormalRate, OverTime,
 NightTime, Weekend: Integer
 end;
 Date = record
 Day: 1..31;
 Month: (Jan,Feb,Mar,Apr,May,Jun,
 July,Aug,Sep,Oct,Nov,Dec);
 Year: 1900..1999;
 end;
 Person = record
 ID: Name;
 Time: Date;
 end;
 Wages = record
 Individual: Person;
 Cost: Rate;
 end;

 Var Salary,Fee: Wages;

Assuming these definitions, the following assignments are legal:

 Salary := Fee;
 Salary.Cost.Overtime := 950;
 Salary.Individual.Time := Fee.Individual.Time;
 Salary.Individual.ID.FamilyName := 'Smith';

80 TURBO Pascal Language Manual

With Statement 11.2

11.2 With Statement

The use of records as describes above does sometimes result in rather lengthy
statements; it would often be easier if we could access individual fields in a
record as if they were simple variables. This is the function of the with state-
ment: it 'opens up' a record so that field identifiers may be used as variable
identifiers.

A with statement consists of the reserved word with followed by a list of re-
cord variables separated by commas followed by the reserved word do and fi-
nally a statement.

Within a with statement, a field is designated only by its field identifier, i.e.
without the record variable identifier:

 with Salary do
 begin
 Individual := NewEmployee;
 Cost := StandardRates;
 end;

Records may be nested within with statements, i.e. records of records may
be 'opened' as shown here:

 with Salary, Individual, ID do
 begin
 FamilyName := 'Smith';
 ChristianNames[1] := 'James';
 end;

This is equivalent to:

 with Salary do with Individual do with ID do

The maximum 'depth' of this nesting of with sentences, i.e. the maximum
number of records which may be 'opened' within one block, depends on your
implementation and is discussed in appendices A and B.

RECORD TYPE 81

11.3 Variant Records

11.3 Variant Records

The syntax of a record type also provides for a variant part, i.e. alternative re-
cord structures which allows fields of a record to consist of a different number
and different types of components, usually depending on the value of a tag
field.

A variant part consists of a tag-field of a previously defined type, whose
values determine the variant, followed by labels corresponding to each
possible value of the tag field. Each label heads a field list which defines the
type of the variant corresponding to the label.

Assuming the existence of the type:

 Origin = (Citizen, Alien);

and of the types Name and Date, the following record allows the field Citi-
zenShip to have different structures depending on whether the value of the
field is Citizen or Alien:

 type
 Person = record
 PersonName: Name;
 BirthDate: Date;
 case CitizenShip: Origin of
 Citizen: (Birthplace: Name);
 Alien: (CountryOfOrigin: Name;
 DateOfEntry: Date;
 PermittedUntil: Date;
 PortOfEntry: Name)
 end;

In this variant record definition, the tag-field is an explicit field which may be
selected and updated like any other field. Thus, if Passenger is a variable of
type Person, statements like the following are perfectly legal:

 Passenger.CitizenShip := Citizen;

 with Passenger, PersonName do
 if CitizenShip = Alien then writeln(FamilyName);

82 TURBO Pascal Language Manual

Variant Records 11.3

The fixed part of a record, i.e. the part containing the common fields, must al-
ways precede the variant part. In the above example, the fields PersonName
and BirthDate are the fixed fields. A record can only have one variant part. In a
variant, the parentheses must be present, even if they will enclose nothing.

The maintenance of tag field values is the responsibility of the programmer
and not of TURBO Pascal. Thus, in the Person type above, the field DateOf-
Entry can be accessed even if the value of the tag field CitizenShip is not
Alien. Actually, the tag field identifier may be omitted altogether, leaving only
the type identifier. Such record variants are known as free unions, as opposed
to record variants with tag fields which are called discriminated unions. The
use of free unions is infrequent and should only be practiced by experienced
programmers.

RECORD TYPE 83

11.3 Variant Records

 Notes:

84 TURBO Pascal Language Manual

SET TYPE 12

 12. SET TYPE

A set is a collection of related objects which may be thought of as a whole.
Each object in such a set is called a member or an element of the set. Examp-
les of sets could be:

 1) All integers between 0 and 100
 2) The letters of the alphabet
 3) The consonants of the alphabet

Two sets are equal if and only if their elements are the same. There is no or-
dering involved, so the sets [1,3,5], [5,3,1] and [3,5,1] are all equal. If the
members of one set are also members of another set, then the first set is said
to be included in the second. In the examples above, 3) is included in 2).

There are three operations involving sets, similar to the operations addition,
multiplication and subtraction operations on numbers:

The union (or sum) of two sets A and B (written A+B) is the set whose
members are members of either A or B. For instance, the union of [1,3,5,7]
and [2,3,4] is [1,2,3,4,5,7].

The intersection (or product) of two sets A and B (written A*B) is the set
whose members are the members of both A and B. Thus, the intersection
of [1,3,4,5,7] and [2,3,4] is [3,4].

The relative complement of B with respect to A (written A-B) is the set
whose members are members of A but not of B. For instance, [1,3,5,7]-
[2,3,4] is [1,5,7].

12.1 Set Type Definition

Although in mathematics there are no restrictions on the objects which may
be members of a set, Pascal only offers a restricted form of sets. The mem-
bers of a set must all be of the same type, called the base type, and the base
type must be a simple type, i.e. any scalar type except real. A set type is intro-
duced by the reserved words set of followed by a simple type.

SET TYPE 85

12.1 Set Type Definition

Examples:
 type
 DaysOfMonth = set of 0..31;
 WorkWeek = set of Mon..Fri;
 Letter = set of 'A'..'Z'
 AdditiveColors = set of (Red,Green,Blue);
 Characters = set of Char;

In TURBO Pascal, the maximum number of elements in a set is 256, and the
ordinal values of the base type must be within the range 0 through 255.

12.2 Set Expressions

Set values may be computed from other set values through set expressions.
Set expressions consist of set constants, set variables, set constructors, and
set operators.

12.2.1 Set Constructors

A set constructor consists of one or more element specifications, separated
by commas, and enclosed in square brackets. An element specification is an
expression of the same type as the base type of the set, or a range expressed
as two such expressions separated by two consecutive periods (..).

Examples:

 ['T','U','R','B','O']
 [X,Y]
 [X..Y]
 [1..5]
 ['A'..'Z','a'..'z','0'..'9']
 [1,3..10,12]
 []

The last example shows the empty set, which, as it contains no expressions to
indicate its base type, is compatible with all set types. The set [1..5] is equiva-
lent to the set [1,2,3,4,5]. If X>Y then [X..Y] denotes the empty set.

86 TURBO Pascal Language Manual

Set Operators 12.2.2

12.2.2 Set Operators

The rules of composition specify set operator precedences according to the
following three classes of operators:

1) * Set intersection.
2) + Set union.
 - Set difference.

3) = Test on equality.
 <> Test on inequality.
 >= True if the second operand is included in the first operand.
 <= True if the first operand is included in the second operand.
 in Test on set membership. The second operand is of a set type, and
 the first operand is an expression of the same type as the base
 type of the set. The result is true if the first operand is a member
 of the second operand, otherwise it is false.

There is no operator for strict inclusion, but it may be programmed as

 A * B = [].

Set expressions are often useful to clarify complicated tests. For instance, the
test:

 if (Ch='T') or (Ch='U') or (Ch='R') or (Ch='B') or (Ch='O')

can be expressed much more clearly as:

 Ch in ['T','U','R','B','O']

And the test:

 if (Ch >= '0') and (Ch <= '9') then ...

is better expressed as:

 if Ch in ['0'..'9'] then ...

SET TYPE 87

12.3 Set Assignments

12.3 Set Assignments

Values resulting from set expressions are assigned to set variables using the
assignment operator :=.

Examples:

 type
 ASCII = Set of 0..127;
 Var
 NoPrint,Print,AllChars: ASCII;
 begin
 AllChars := [0..127];
 NoPrint := [0..31,127];
 Print := AllChars - NoPrint;
 end;

88 TURBO Pascal Language Manual

TYPED CONSTANTS 73

 13. TYPED CONSTANTS

Typed constants are a TURBO speciality. A typed constant may be used
exactly like a variable of the same type. Typed constants may thus be used as
'initialized variables', because the value of a typed constant is defined, whe-
reas the value of a variable is undefined until an assignment is made. Care
should be taken, of course, not to assign values to typed constants whose va-
lues are actually meant to be constant.

The use of a typed constant saves code if the constant is used often in a pro-
gram, because a typed constant is included in the program code only once,
whereas an untyped constant is included every time it is used.

Typed constants are defined like untyped constants (see section 5.2.2), ex-
cept that the definition specifies not only the value of the constant but also
the type. In the definition the typed constant identifier is succeeded by a colon
and a type identifier, which is then followed by an equal sign and the actual
constant.

13.1 Unstructured Typed Constants

An unstructured typed constant is a constant defined as one of the scalar ty-
pes:

 const
 NumberOfCars: Integer = 1267;
 Interest: Real = 12.67;
 Heading: string[7] = 'SECTION';
 Xon: Char = ^Q;

Contrary to untyped constants, a typed constant may be used in place of a
variable as a variable parameter to a procedure or a function. As a typed
constant is actually a variable with a constant value, it cannot be used in the
definition of other constants or types. Thus, as Min and Max are typed
constants, the following construct is illegal:

 const
 Min: Integer = 0;
 Max: Integer = 50;
 type
 Range: array[Min..Max] of integer

TYPED CONSTANTS 89

13.2 Structured Typed Constants

13.2 Structured Typed Constants

Structured constants comprise array constants, record constants, and set
constants. They are often used to provide initialized tables and sets for tests,
conversions, mapping functions, etc. The following sections describe each
type in detail.

13.2.1 Array Constants

The definition of an array constant consists of the constant identifier succee-
ded by a colon and the type identifier of a previously defined array type follo-
wed by an equal sign and the constant value expressed as a set of constants
separated by commas and enclosed in parentheses.

Examples:
 type
 Status = (Active,Passive,Waiting);
 StringRep = array[Status] of string[7];
 const
 Stat: StringRep = ('active','passive','waiting');

The example defines the array constants Stat, which may be used to convert
values of the scalar type Status into their corresponding string represen-
tations. The components of Stat are:

 Stat[Active] = 'active'
 Stat[Passive] = 'passive'
 Stat[Waiting] = 'waiting'

The component type of an array constant may be any type except File types
and Pointer types. Character array constants may be specified both as single
characters and as strings. Thus, the definition:

 const
 Digits: array[0..9] of Char =
 ('0','1','2','3','4','5','6','7','8','9');

may be expressed more conveniently as:

 const
 Digits: array[0..9] of Char = '0123456789';

90 TURBO Pascal Language Manual

Multidimensional Array Constants 13.2.2

13.2.2 Multidimensional Array Constants

Multidimensional array constants are defined by enclosing the constants of
each dimension in separate sets of parentheses, separated by commas. The
innermost constants correspond to the rightmost dimensions.

Example:
 type
 Cube = array[0..1,0..1,0..1] of integer;
 const
 Maze: Cube = (((0,1),(2,3)),((4,5),(6,7)));
 begin
 Writeln(Maze[0,0,0],' = 0');
 Writeln(Maze[0,0,1],' = 1');
 Writeln(Maze[0,1,0],' = 2');
 Writeln(Maze[0,1,1],' = 3');
 Writeln(Maze[1,0,0],' = 4');
 Writeln(Maze[1,0,1],' = 5');
 Writeln(Maze[1,1,0],' = 6');
 Writeln(Maze[1,1,1],' = 7');
 end.

13.2.3 Record Constants

The definition of a record constant consists of the constant identifier succe-
ded by a colon and the type identifier of a previously defined record type follo-
wed by an equal sign and the constant value expressed as a list of field con-
stants separated by semi-colons and enclosed in parentheses.

Examples:
 type
 Point = record
 X,Y,Z: integer;
 end;
 OS = (CPM80,CPM86,MSDOS,Unix);
 UI = (CCP,SomethingElse,MenuMaster);
 Computer = record
 OperatingSystems: array[1..4] of OS;
 UserInterface: UI;
 end;

TYPED CONSTANTS 91

13.2.3 Record Constants

 const
 Origo: Point = (X:0; Y:0; Z:0);
 SuperComp: Computer =
 (OperatingSystems: (CPM80,CPM86,MSDOS,Unix);
 UserInterface: MenuMaster);
 Plane1: array[1..3] of Point =
 ((X:1;Y:4;Z:5),(X:10;Y:-78;Z:45),(X:100;Y:10;Z:-7));

The field constants must be specified in the same order as they appear in the
definition of the record type. If a record contains fields of file types or pointer
types, then constants of that record type cannot be specified. If a record con-
stant contains a variant, then it is the responsibility of the programmer to spe-
cify only the fields of the valid variant. If the variant contains a tag field, then
its value must be specified.

13.2.4 Set Constants

A set constant consists of one or more element specifications separated by
commas, and enclosed in square brackets. An element specification must be
a constant or a range expression consisting of two constants separated by
two consecutive periods (..).

Example:
 type
 Up = set of 'A'..'Z';
 Low = set of 'a'..'z';
 const
 UpperCase: Up = ['A'..'Z'];
 Vowels : Low = ['a','e','i','o','u','y'];
 Delimiter: set of Char =
 [' '..'/',':'..'?','['..'`','{'..'~'];

92 TURBO Pascal Language Manual

FILE TYPES 14

 14. FILE TYPES

Computer programs frequently produce large amounts of data which is not
required until later in the program or even by some other program. As this
data often exceeds the available memory, data can be written to and read
from named units placed on magnetic devices such as diskettes or hard disks.
These units are called files.

A file consists of a sequence of components of equal type. The number of
components in a file (the size of the file) is not determined by the definition of
the file; instead the Pascal system keeps track of file accesses through a file
pointer, and each time a component is written to or read from a file, the file
pointer of that file is advanced to the next component. As all components of a
file are of equal length, the position of a specific component can be calcula-
ted. Thus the file pointer can be moved to any component in the file, provid-
ing random access to any element of the file.

14.1 File Type Definition

A file type is defined by the reserved words file of followed by the type of the
components of the file, and a file identifier is declared by the same words fol-
lowed by the identifier of a previously defined file type.

Examples:
 type
 ProductName = string[80];
 Product = file of record
 Name: ProductName;
 ItemNumber: Real;
 InStock: Real;
 MinStock: Real;
 Supplier: Integer;
 end;
 Var
 ProductFile: Product;
 ProductNames: file of ProductName;

The component type of a file may be any type, except a file type. (i.e., with re-
ference to the example above, file of Product is not allowed). File variables
may appear neither in assignments nor in expressions.

FILE TYPES 93

14.2 Operations on Files

14.2 Operations on Files

The following sections describe the procedures available for file handling. The
identifier FilVar used throughout denotes a file variable identifier declared as
described above.

14.2.1 Assign

Syntax: Assign(FilVar,Str)

Str is a string expression yielding any legal file name. This file name is assig-
ned to the file variable FilVar, and all further operation on FilVar will operate
on the disk file Str. Assign should never be used on a file which is in use.

14.2.2 Rewrite

Syntax: Rewrite(FilVar)

A new disk file of the name assigned to the file variable FilVar is created and
prepared for processing, and the file pointer is set to the beginning of the file,
i.e. component no. 0. Any previously existing file with the same name is era-
sed. A disk file created by rewrite is initially empty, i.e. it contains no ele-
ments.

14.2.3 Reset

Syntax: Reset(FilVar)

The disk file of the name assigned to the file variable FilVar is prepared for
processing, and the file pointer is set to the beginning of the file, i.e. compo-
nent no. 0. FilVar must name an existing file, otherwise an I/O error occurs.

94 TURBO Pascal Language Manual

Read 14.2.4

14.2.4 Read

Syntax: Read(FilVar,Var)

Var denotes one or more variables of the component type of FilVar, sepa-
rated by commas. Each variable is read from the disk file, and following each
read operation, the file pointer is advanced to the next component.

14.2.5 Write

Syntax: Write(FilVar,Var)

Var denotes one or more variables of the component type of FilVar, sepa-
rated by commas. Each variable is written to the disk file, and following each
write operation, the file pointer is advanced to the next component.

14.2.6 Seek

Syntax: Seek(FilVar,n)

Seek moves the file pointer to the n'th component of the file deno-
ted by FilVar. n is an integer expression. The position of the first component is
0. Note that in order to expand a file it is possible to seek one component
beyond the last component. The statement

Seek(FilVar, FileSize(FilVar));

thus places the file pointer at the end of the file (FileSize returns the number
of components in the file, and as the components are numbered from zero,
the returned number is one greater than the number of the last component).

14.2.7 Flush

Syntax: Flush(FilVar)

Flush empties the internal sector buffer of the disk file FilVar, and thus assu-
res that the sector buffer is written to the disk if any write operations have ta-
ken place since the last disk update. Flush also insures that the next read ope-
ration will actually perform a physical read from the disk file. Flush should ne-
ver be used on a closed file.

FILE TYPES 95

14.2.8 Close

14.2.8 Close

Syntax: Close(FilVar)

The disk file associated with FilVar is closed, and the disk directory is updated
to reflect the new status of the file. Notice that in multi-user environments it
is often necessary to Close a file, even if it has only been read from.

14.2.9 Erase

Syntax: Erase(FilVar)

The disk file associated with FilVar is erased. If the file is open, i.e. if the file
has been reset or rewritten but not closed, it is good programming practice to
close the file before erasing it.

14.2.10 Rename

Syntax: Rename(FilVar,Str)

The disk file associated with FilVar is renamed to a new name given by the
string expression Str. The disk directory is updated to show the new name of
the file, and further operations on FilVar will operate on the file with the new
name. Rename should never be used on an open file.

Notice that it is the programmer's responsibility to assure that the file named
by Str does not already exist. If it does, multiple occurrences of the same
name may result. The following function returns True if the file name passed
as a parameter exists, otherwise it returns False:

 function Exist(FileName: Name): boolean;
 Var
 Fil: file;
 begin
 Assign(Fil, FileName);
 {$I-}
 Reset(Fil);
 {$I+}
 Exist := (IOresult = 0);
 end;

96 TURBO Pascal Language Manual

File Standard Functions 14.3

14.3 File Standard Functions

The following standard functions are applicable to files:

14.3.1 EOF

Syntax: EOF(FilVar)

A Boolean function which returns True if the file pointer is positioned at the
end of the disk file, i.e. beyond the last component of the file. If not, EOF re-
turns False.

14.3.2 FilePos

Syntax: FilePos(FilVar)

An integer function which returns the current position of the file pointer. The
position of the first component of a file is 0.

14.3.3 FileSize

Syntax: FileSize(FilVar)

An integer function which returns the size of the disk file expressed as the
number of components in the file. If FileSize(FilVar) is zero, the file is empty.

14.4 Using Files

Before using a file, the Assign procedure must be called to assign the file
name to a file variable. Before input and/or output operations are performed,
the file must be opened with a call to Rewrite or Reset. This call will set the
file pointer to point to the first component of the disk file, i.e. FilePos(FilVar)
= 0. After Rewrite, FileSize(FilVar) is 0.

FILE TYPES 97

14.4 Using Files

A disk file can be expanded only by adding components to the end of the
existing file. The file pointer can be moved to the end of the file by executing
the following sentence:

 Seek(FilVar, FileSize(FilVar));

When a program has finished its input/output operations on a file, it should
always call the Close procedure. Failure to do so may result in loss of data, as
the disk directory is not properly updated.

The program below creates a disk file called PRODUCTS.DTA, and writes 100
records of the type Product to the file. This initializes the file for subsequent
random access (i.e. records may be read and written anywhere in the file).

 program InitProductFile;
 const
 MaxNumberOfProducts = 100;
 type
 ProductName = string[20];
 Product = record
 Name: ProductName;
 ItemNumber: Integer;
 InStock: Real;
 Supplier: Integer;
 end;
 Var
 ProductFile: file of Product;
 ProductRec: Product;
 I: Integer;
 begin
 Assign(ProductFile,'PRODUCT.DTA');
 Rewrite(ProductFile); {open the file and delete any data}
 with ProductRec do
 begin
 Name := ''; InStock := 0; Supplier := 0;
 for I := 1 to MaxNumberOfProducts do
 begin
 ItemNumber := I;
 Write(ProductFile,ProductRec);
 end;
 end;
 Close(ProductFile);
 end.

98 TURBO Pascal Language Manual

Using Files 14.4

The following program demonstrates the use of Seek on random files. The
program is used to update the ProductFile created by the program in the pre-
vious example.

 program UpDateProductFile;
 const
 MaxNumberOfProducts = 100;
 type
 ProductName = string[20];
 Product = record
 Name: ProductName;
 ItemNumber: Integer;
 InStock: Real;
 Supplier: Integer;
 end;
 Var
 ProductFile: file of Product;
 ProductRec: Product;
 I, Pnr: Integer;
 begin
 Assign(ProductFile,'PRODUCT.DTA'); Reset(ProductFile);
 ClrScr;
 Write('Enter product number (0= stop) '); Readln(Pnr);
 while Pnr in [1..MaxNumberOfProducts] do
 begin
 Seek(ProductFile,Pnr-1); Read(ProductFile,ProductRec);
 with ProductRec do
 begin
 Write('Enter name of product (',Name:20,') ');
 Readln(Name);
 Write('Enter number in stock (',InStock:20:0,') ');
 Readln(InStock);
 Write('Enter supplier number (',Supplier:20,') ');
 Readln(Supplier);
 ItemNumber:=Pnr;
 end;
 Seek(ProductFile,Pnr-1);
 Write(ProductFile,ProductRec);
 ClrScr; Writeln;
 Write('Enter product number (0= stop) '); Readln(Pnr);
 end;
 Close(ProductFile);
 end.

FILE TYPES 99

14.5 Text Files

14.5 Text Files

Unlike all other file types, text files are not simply sequences of values of
some type. Although the basic components of a text file are characters, they
are structured into lines, each line being terminated by an end-of-line marker
(a CR/LF sequence). The file is further ended by an end-of-file marker (a Ctrl-
Z). As the length of lines may vary, the position of a given line in a file cannot
be calculated. Text files can therefore only be processed sequentially. Further-
more, input and output cannot be performed simultaneously to a text file.

14.5.1 Operations on Text Files

A text file variable is declared by referring to the standard type identifier Text.
Subsequent file operations must be preceded by a call to Assign and a call to
Reset or Rewrite must furthermore precede input or output operations.

Rewrite is used to create a new text file, and the only operation then allowed
on the file is the appending of new components to the end of the file. Reset is
used to open an existing file for reading, and the only operation allowed on
the file is sequential reading. When a new textfile is closed, an end-of-file
mark is automatically appended to the file.

Character input and output on text files is made with the standard proce-
dures Read and Write. Lines are processed with the special text file operators
Readln, Writeln, and Eoln:

Readln(Filvar) Skips to the beginning of the next line, i.e. skips all charac-
 ters up to and including the next CR/LF sequence.
Writeln(Filvar) Writes a line marker, i.e. a CR/LF sequence, to the text-
 file.
Eoln(FilVar) A Boolean function which returns True if the end of the
 current line has been reached, i.e. if the file pointer is posi-
 tioned at the CR character of the CR/LF line marker. If
 EOF(FilVar) is true, Eoln(Filvar) is also true.

100 TURBO Pascal Language Manual

Operations on Text Files 14.5.1

When applied to a text file, the EOF function returns the value True if the file
pointer is positioned at the end-of-file mark (the CTRL/Z character ending the
file). The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to text files.

The following sample program reads a text file from disk and prints it on the
pre-defined device Lst which is the printer. Words surrounded by Ctrl-S in the
file are printed underlined:

 program TextFileDemo;
 Var
 FilVar: Text;
 Line,
 Extraline: string[255];
 I: Integer;
 UnderLine: Boolean;
 FileName: string[14];
 begin
 UnderLine := False;
 Write('Enter name of file to list: ');
 Readln(FileName);
 Assign(FilVar,FileName);
 Reset(FilVar);
 while not Eof(FilVar) do
 begin
 Readln(FilVar,Line);
 I := 1; Extraline := '';
 for I := 1 to Length(Line) do
 begin
 if Line[I]<>^S then
 begin
 Write(Lst,Line[I]);
 if UnderLine then ExtraLine := Extraline+'_'
 else ExtraLine := ExtraLine+' '
 end
 else UnderLine := not UnderLine;
 end;
 Write(Lst,^M); Writeln(Lst,ExtraLine);
 end; {while not Eof}
 end.

Further extensions of the procedures Read and Write, which facilitate conve-
nient handling of formatted input and output, are described in section 14.6.

FILE TYPES 101

14.5.2 Logical Devices

14.5.2 Logical Devices

In TURBO Pascal, external devices such as terminals, printers, and modems
are regarded as logical devices which are treated like text files. The following
logical devices are available:

CON: The console device. Output is sent to the operating system's con-
 sole output device, usually the CRT, and input is obtained from the
 console input device, usually the keyboard. Contrary to the TRM:
 device (see below), the CON: device provides buffered input. In
 short, this means that each Read or Readln from a textfile assigned
 to the CON: device will input an entire line into a line buffer, and
 that the operator is provided with a set of editing facilities during
 line input. For more details on console input, please refer to sections
 14.5.3 and 14.6.1.
TRM: The terminal device. Output is sent to the operating system's con-
 sole output device, usually the CRT, and input is obtained from the
 console input device, usually the keyboard. Input characters are ec-
 hoed, unless they are control characters. The only control character
 echoed is a carriage return (CR), which is echoed as CR/LF.
KBD: The Keyboard device (input only). Input is obtained from the operat-
 ing system's console input device, usually the keyboard. Input is not
 echoed.
LST: The list device (output only). Output is sent to the operating sy-
 stem's list device, typically the line printer.
AUX: The auxiliary device. Output is sent to the operating system's punch
 device, and input is obtained from the operating system's reader de-
 vice. Usually, the punch and reader devices refer to a modem.
USR: The user device. Output is sent to the user output routine, and input
 is obtained from the user input routine. For further details on user
 input and output, please refer to sections A.1.3 and B.3.3.

These logical devices may be accessed through the pre-assigned files dis-
cussed in section 14.5.3 or they may be assigned to file variables, exactly like
a disk file. There is no difference between Rewrite and Reset on a file assig-
ned to a logical device, Close performs no function, and an attempt to Erase
such a file will cause an I/O error.

102 TURBO Pascal Language Manual

Logical Devices 14.5.2

The standard functions Eof and Eoln operate differently on logical devices
than on disk files. On a disk file, Eof returns True when the next character in
the file is a Ctrl-Z, or when physical EOF is encountered, and Eoln returns True
when the next character is a CR or a Ctrl-Z. Thus, Eof and Eoln are in fact
'look ahead' routines.

As you cannot look ahead on a logical device, Eoln and Eof operate on the last
character read instead of on the next character. In effect, Eof returns True
when the last character read was a Ctrl-Z, and Eoln returns True when the last
character read was a CR or a Ctrl-Z. The following table provides an overview
of the operation of Eoln and Eof:

+-------------+--------------------+---+
| |On Files |On Logical Devices |
+-------------+--------------------+---+
Eoln is true	if next character	if current character
	is CR or Ctrl-Z	is CR or Ctrl-Z
	or if EOF is true	
Eof is true	if next character	if current character
	character is Ctrl-Z	is Ctrl-Z
	or if physical EOF	
	is met	
+-------------+--------------------+---+
 Table 14-1: Operation of EOLN and Eof

Similarly, the Readln procedure works differently on logical devices than on
disk files. On a disk file, Readln reads all characters up to and including the
CR/LF sequence, whereas on a logical device it only reads up to and including
the first CR. The reason for this is again the inability to 'look ahead' on logical
devices, which means that the system has no way of knowing what character
will follow the CR.

14.5.3 Standard Files

As an alternative to assigning text files to logical devices as described above,
TURBO Pascal offers a number of pre-declared text files which have already
been assigned to specific logical devices and prepared for processing. Thus,
the programmer is saved the reset/rewrite and close processes, and the use
of these standard files further saves code:

FILE TYPES 103

14.5.3 Standard Files

Input The primary input file. This file is assigned to either the CON: device
 or to the TRM: device (see below for further details).
Output The primary output file. This file is assigned to either the CON: de-
 vice or to the TRM: device (see below for further details).
Con Assigned to the console device (CON:).
Trm Assigned to the terminal device (TRM:).
Kbd Assigned to the keyboard device (KBD:).
Lst Assigned to the list device (LST:).
Aux Assigned to the auxiliary device (AUX:).
Usr Assigned to the user device (USR:).

Notice that the use of Assign, Reset, Rewrite, and Close on these files is not
only unnecessary, but also illegal.

The logical device referred to by the standard files Input and Output is deter-
mined by the B compiler directive. The default value {$B+} causes the con-
sole device (CON:) to be used, which provides buffered input with editing fa-
cilities (see section 14.6.1), but it does not conform to the standard in all
aspects. In the {$B-} mode, input and output will instead refer to the terminal
device (TRM:) which offers no editing facilities during input, but entries may
follow the formats defined by Standard Pascal. No differences exist between
the console device and the terminal device on output operations.

Notice that the B compiler directive must be placed at the start of the pro-
gram block, and is thus a global directive which cannot be changed throug-
hout the program text. If some input/output operations are to use the CON:
device, and others the TRM: device, then set the B directive for the most fre-
quently used device and specify the other device explicitly in the remaining
calls to i/o procedures.

Example:
 {$B-}
 program ReadAndWrite(input,output);
 Readln(Var1); {Reads from the TRM: device}
 Readln(Con,Var2); {Reads from the CON: device}

In situations where input is not to be automatically echoed to the screen, in-
put should be made from the standard file Kbd:

 Read(Kbd, Var)

104 TURBO Pascal Language Manual

Standard Files 14.5.3

As the standard files Input and Output are used very frequently, they are cho-
sen by default when no file identifier is explicitly stated. The following list
shows the abbreviated text file operations and their equivalents:

 Write(Ch) Write(Output,Ch)
 Read(Ch) Read(Input,Ch)
 Writeln Writeln(Output)
 Readln Readln(Input)
 Eof Eof(Input)
 Eoln Eoln(Input)

The following program shows the use of the standard file Lst to list the file
ProductFile (see the example on page 99) on the printer:

 program ListProductFile;
 const
 MaxNumberOfProducts = 100;
 type
 ProductName = string[20];
 Product = record
 Name: ProductName; ItemNumber: Integer;
 InStock: Real;
 Supplier: Integer;
 end;
 Var
 ProductFile: file of Product;
 ProductRec: Product; I: Integer;
 begin
 Assign(ProductFile,'PRODUCT.DTA'); Reset(ProductFile);
 for I := 1 to MaxNumberOfProducts do
 begin
 Read(ProductFile, ProductRec);
 with ProductRec do
 begin
 if Name<>'' then
 Writeln(Lst,'Item: ',ItemNumber:5,' ', Name:20,
 ' From: ', Supplier:5,
 ' Now in stock: ',InStock:0:0);
 end;
 end;
 Close(ProductFile);
 end.

FILE TYPES 105

14.6 Text File Input and Output

14.6 Text File Input and Output

Input and output of data in readable form is done through text files as descri-
bed in section 14.5. A text file may be assigned to any device, i.e. a disk file or
one of the standard I/O devices. Input and output on text files is done with the
standard procedures Read, Readln, Write, and Writeln which use a special
syntax for their parameter lists to facilitate maximum flexibility of input and
output.

In particular, parameters may be of different types, in which case the I/O pro-
cedures provide automatic data conversion to and from the basic Char type of
text files.

If the first parameter of an I/O procedure is a variable identifier representing a
text file, then I/O will act on that file. If not, I/O will act on the standard files
Input and Output. See section 14.5.3 for more details.

14.6.1 Read Procedure

The Read procedure provides input of characters, strings, and numeric data.
The syntax of the Read statement is:

 Read(Var1,Var2,...,VarN)
or
 Read(FilVar,Var1,Var2,...,VarN)

where Var1, Var2,..., VarN are variables of type Char, String, Integer or Real. In
the first case, the variables are input from the the standard file Input, usually
the keyboard. In the second case, the variables are input from the text file
which is previously assigned to FilVar and prepared for reading.

With a variable of type Char, Read reads one character from the file and as-
signs that character to the variable. If the file is a disk file, Eoln is true if the
next character is a CR or a Ctrl-Z, and Eof is true if the next character is a Ctrl-
Z, or physical end-of-file is met. If the file is a logical device (including the
standard files Input and Output), Eoln is true if the character read was a CR or
if Eof is True, and Eof is true if the character read was a Ctrl-Z.

106 TURBO Pascal Language Manual

Read Procedure 14.6.7

With a variable of type string, Read reads as many characters as allowed by
the defined maximum length of the string, unless Eoln or Eof is reached first.
Eoln is true if the character read was a CR or if Eof is True, and Eof is true if
the last character read is a Ctrl-Z, or physical end-of-file is met.

With a numeric variable (Integer or Real), Read expects a string of characters
which complies with the format of a numeric constant of the relevant type as
defined in section 4.2. Any blanks, TABs, CRs, or LFs preceding the string are
skipped. The string must be no longer than 30 characters, and it must be fol-
lowed by a blank, a TAB, a CR, or a Ctrl-Z. If the string does not conform to
the expected format, an I/O error occurs. Otherwise the numeric string is con-
verted to a value of the appropriate type and assigned to the variable. When
reading from a disk file, and the input string is ended with a blank or a TAB,
the next Read or Readln will start with the character immediately following
that blank or TAB. For both disk files and logical devices, Eoln is true if the str-
ing was ended with a CR or a Ctrl-Z, and Eof is true if the string was ended
with a Ctrl-Z.

A special case of numeric input is when Eoln or Eof is true at the begin-
ning of the Read (e.g. if input from the keyboard is only a CR). In that case no
new value is assigned to the variable, and the variable retains its former value.

If the input file is a console device (CON:), or if the standard file
Input is used in the {$B+} mode (default), special rules apply to the reading of
variables. On a call to Read or Readln, a line is input from the console and
stored into a buffer, and the reading of variables then uses this buffer as the
input source. This allows for editing during entry. The following editing facili-
ties are available:

BACKSPACE and DEL.
 Backspaces one character position and deletes the character there.
 BACKSPACE is usually generated by pressing the key marked BS or
 BACKSPACE or by pressing Ctrl-H. DEL is usually generated by the
 key thus marked, or in some cases RUB or RUBOUT.

Ctrl-X
 Backspaces to the beginning of the line and erases all characters in-
 put.

The RETURN key is used to terminate the input line. This key may be marked
ENTER on some keyboards. This terminating CR is not echoed to the screen.

FILE TYPES 107

14.6.1 Read Procedure

Internally, the input line is stored with a Ctrl-Z appended to the end of it.
Thus, if fewer values are specified on the input line than the number of variab-
les in Read's parameter list, any Char variables in excess will be set to Ctrl-Z,
Strings will be empty, and numeric variables will remain unchanged.

The maximum number of characters that can be entered on an input line from
the console is 127 by default. However, you may lower this limit by assign-
ing an integer in the range 0 through 127 to the predefined variable BufLen.

Example:
 Write('File name (max. 14 chars): ');
 BufLen:=14;
 Read(FileName);

Notice that assignments to BufLen affect only the immediately following
Read. After that, BufLen is restored to 127.

14.6.2 Readln Procedure

The Readln procedure is identical to the Read procedure, except that after the
last variable has been read, the remainder of the line is skipped. I.e., all cha-
racters up to and including the next CR/LF sequence (or the next CR on a logi-
cal device) are skipped. The syntax of the procedure statement is:

 Readln(Varl,Var2,...,VarN)
or
 Readln(FilVar,Var1,Var2,...,VarN)

After a Readln, the following Read or Readln will read from the beginning of
the next line. Readln may also be called without parameters:

 Readln
or
 Readln(FilVar)

in which case the remainder of the line is skipped. When Readln is reading
from the console (standard file Input or a file assigned to CON:), the terminat-
ing CR is echoed to the screen as a CR/LF sequence, as opposed to Read.

108 TURBO Pascal Language Manual

Write Procedure 14.6.3

14.6.3 Write Procedure

The Write procedure provides output of characters, strings, boolean values,
and numeric values. The syntax of a Write statement is:

 Write(Var1,Var2,...,VarN)
or
 Write(FilVar, Var1,Var2,...,VarN)

where Var1, Var2,..., VarN (the write parameters) are variables of type Char,
String, Boolean, Integer or Real, optionally followed by a colon and an integer
expression defining the width of the output field. In the first case, the variab-
les are output to the the standard file Output, usually the screen. In the se-
cond case, the variables are output to the text file which is previously assig-
ned to FilVar.

The format of a write parameter depends on the type of the variable. In the
following descriptions of the different formats and their effects, the symbols:

I, m, n denote expressions of type Integer,
R denotes an expression of type Real,
Ch denotes an expression of type Char,
S denotes an expression of type String, and
B denotes an expression of type Boolean.
Ch The character Ch is output.
Ch:n The character Ch is output right-adjusted in a field which is n charac-
 ters wide, i.e. Ch is preceded by n - 1 blanks.
S The string S is output. Arrays of characters may also be output, as
 they are compatible with strings.
S:n The string S is output right-adjusted in a field which is n characters
 wide, i.e. S is preceded by n - length(S) blanks.
B Depending on the value of B, either the word TRUE or the word
 FALSE is output.
B:n Depending on the value of B, either the word TRUE or the word
 FALSE is output right-adjusted in a field which is n characters wide.
I The decimal representation of the value of I is output.
I:n The decimal representation of the value of I is output right-adjusted in
 a field which is n characters wide.

FILE TYPES 109

14.6.3 Write Procedure

R The decimal representation of the value of R is output, right adjusted
 in a field 18 characters wide, using floating point format:

 R >= 0.0: __d.ddddddddddEtdd
 R < 0.0: _-d.ddddddddddEtdd

 where _ represents a blank, d represents a digit, and t represents eit-
 her '+' or '-'.

R:n The decimal representation of the value of R is output, right adjusted
 in a field n characters wide, using floating point format:

 R >= 0.0: blanksd.digitsEtdd
 R < 0.0: blanks-d.digitsEtdd

 where blanks represents zero or more blanks, digits represents from
 one to ten digits, d represents a digit, and t represents either plus or
 minus. As at least one digit is output after the decimal point, the field
 width is a minimum of 7 characters (8 for R < 0.0). When n is greater than
 16 (17 for R < 0.0), the number is preceded by n-16 blanks (n-17 for
 R < 0.0).

R:n:m The decimal representation of the value of R is output, right adjusted
 in a field n characters wide, using fixed point format with m digits af-
 ter the decimal point. No decimal part, and no decimal point, is output
 if m is 0. m must be in the range 0 <= m <= 24; otherwise floating
 point format is used. The number is preceded by an appropriate num-
 ber of blanks to make the field width n.

110 TURBO Pascal Language Manual

Writeln Procedure 14.6.4

14.6.4 Writeln Procedure

The Writeln procedure is identical to the Write procedure, except that a CR/LF
sequence is output after the last value. The syntax of the Writeln statement is:

 Writeln(WP1,WP2,...,WPn)
or
 Writeln(FilVar,WP1,WP2,...,WPn)

A Writeln with no write parameters outputs an empty line consisting of a
CR/LF sequence:

 Writeln
or
 Writeln(File)

FILE TYPES 111

14.7 Untyped Files

14.7 Untyped Files

Untyped files are low-level I/O channels primarily used for direct access to
any disk file using a record size of 128 bytes.

In input and output operations to untyped files, data is transferred directly
between the disk file and the variable, thus saving the space required by the
sector buffer required by typed files. An untyped file variable therefore occu-
pies less memory than other file variables. As an untyped file is furthermore
compatible with any file, the use of an untyped file is therefore to be preferred
if a file variable is required only for Erase, Rename or other non-input/output
operations.

An untyped file is declared with the reserved word file:

 Var
 DataFile: file;

14.7.1 BlockRead / BlockWrite

All standard file handling procedures and functions except Read, Write, and
Flush are allowed on untyped files. Read and Write are replaced by two spe-
cial high-speed transfer procedures: BlockRead and BlockWrite. The syntax of
a call to these procedures is:

 BlockRead(FilVar, Var, recs)
 BlockWrite(FilVar, Var, recs)

where FilVar variable identifies an untyped file, Var is any variable, and recs
is an integer expression defining the number of 128-byte records to be trans-
ferred between the disk file and the variable. The transfer starts at the first
byte occupied by the variable Var. The programmer must insure
that the variable Var occupies enough space to accommodate the
entire data transfer. A call to BlockRead or BlockWrite also advances the file
pointer recs records.

A file to be operated on by BlockRead or Block Write must first be prepared by
Assign and Rewrite or Reset. Rewrite creates and opens a new file, and Reset
opens an existing file. After processing, Close should be used to insure proper
termination.

112 TURBO Pascal Language Manual

BlockRead / BlockWrite 14.7.1

The standard function EOF works as with typed files. So do standard func-
tions FilePos and FileSize and standard procedure Seek, using a component
size of 128 bytes (the record size used by BlockRead and BlockWrite).

The following program shows the use of an untyped file. It reads any disk file
and copies its contents to any other disk file:

 program FileCopy;
 const
 BufSize = 200;
 BufByteSize = 15600;
 var
 Source,
 Destination: File;
 SourceName,
 DestinationName: string[14];
 Buffer: array[1..BufByteSize] of Byte;
 NoOfRecsToRead,
 Remaining: Integer;

 begin
 Write('Enter source file name: ');
 Readln(SourceName);
 Assign(Source, SourceName);
 Reset(Source);
 Write('Enter destination file name: ');
 Readln(DestinationName);
 Assign(Destination, DestinationName);
 Rewrite(Destination);
 Remaining := FileSize(Source);
 while Remaining > 0 do
 begin
 if BufSize <= Remaining then
 NoOfRecsToRead := BufSize
 else
 NoOfRecsToRead := Remaining;
 BlockRead(Source,Buffer,NoOfRecsToRead);
 BlockWrite(Destination,Buffer,NoOfRecsToRead);
 Remaining := Remaining-NoOfRecsToRead;
 end;
 Close(Destination);
 end.

FILE TYPES 113

14.8 I/O checking

14.8 I/O checking

The I compiler directive is used to control generation of runtime I/O error
checking code. The default state is active, i.e. {$I+} which causes calls to an
I/O check routine after each I/O operation. I/O errors then cause the program
to terminate, and an error message indicating the type of error is displayed.

If I/O checking is passive, i.e. {$I-}, no run time checks are performed. An I/O
error thus does not cause the program to stop, but suspends any further I/O
until the standard function IOresult is called. When this is done, the error con-
dition is reset and I/O may be performed again. It is now the programmer's
responsibility to take proper action according to the type of I/O error. A zero
returned by IOresult indicates a successful operation, anything else means
that an error occurred during the last I/O operation. Appendix I lists all error
messages and their Numbers. Notice that as the error condition is reset
when IOresult is called, subsequent calls to IOresult will return zero until the
next I/O error occurs.

The IOresult function is very convenient in situations where a program halt is
an unacceptable result of an I/O error, like in the following example which
continues to ask for a file name until the attempt to reset the file is successful
(i.e. until an existing file name is entered):

 procedure OpenInFile;
 begin
 repeat
 Write('Enter name of input file ');
 Readln(InFileName);
 Assign(InFile, InFileName);
 {$I-} Reset(InFile) {$I+}
 OK := (IOresult = 0);
 if not OK then Writeln('Cannot find file ',InFileName);
 until OK;
 end;

When the I directive is passive ({$I-}), the following standard procedures
should be followed by a check of IOresult to insure proper error handling:

 Assign Close Read Rewrite
 BlockRead Erase Readln Seek
 BlockWrite Execute Rename Write
 Chain Flush Reset Writeln

114 TURBO Pascal Language Manual

POINTER TYPES 15

 15. POINTER TYPES

Variables discussed up to now have been static, i.e. their form and size is pre-
determined, and they exist throughout the entire execution of the block in
which they are declared. Programs, however, frequently need the use of a
data structure which varies in form and size during execution. Dynamic va-
riables serve this purpose as they are generated as the need arises and may
be discarded after use.

Such dynamic variables are not declared in an explicit variable declaration like
static variables, and they cannot be referenced directly by identifiers. Instead,
a special variable containing the memory address of the variable is used to
point to the variable. This special variable is called a pointer variable.

15.1 Defining a Pointer Variable

A pointer type is defined by the pointer symbol ^ succeeded by the type
identifier of the dynamic variables which may be referenced by pointer variab-
les of this type.

The following shows how to declare a record with associated pointers. The
type PersonPointer is declared as a pointer to variables of type PersonRe-
cord:

 type
 PersonPointer = ^PersonRecord;
 PersonRecord = record
 Name: string[50];
 Job: string[50];
 Next: PersonPointer;
 end;

 Var
 FirstPerson, LastPerson, NewPerson: PersonPointer;

The variables FirstPerson, LastPerson and NewPerson are thus pointer
variables which can point at records of type PersonRecord.

POINTER TYPES 115

15.7 Defining a Pointer Variable

As shown above, the type identifier in a pointer type definition may refer to an
identifier which is not yet defined.

15.2 Allocating Variables (New)

Before it makes any sense to use any of these pointer variables we must, of
course, have some variables to point at. New variables of any type are alloca-
ted with the standard procedure New. The procedure has one parameter
which must be a pointer to variables of the type we want to create.

A new variable of type PersonRecord can thus be created by the statement:

 New(FirstPerson);

which has the effect of having FirstPerson point at a dynamically allocated re-
cord of type PersonRecord.

Assignments between pointer variables can be made as long as both pointers
are of identical type. Pointers of identical type may also be compared using
the relational operators = and <>, returning a Boolean result (True or False).

The pointer value nil is compatible with all pointer types. nil points to no dy-
namic variable, and may be assigned to pointer variables to indicate the ab-
sence of a usable pointer. nil may also be used in comparisons.

Variables created by the standard procedure New are stored in a stack-like
structure called the heap. The TURBO Pascal system controls the heap by
maintaining a heap pointer which at the beginning of a program is initialized
to the address of the first free byte in memory. On each call to New, the heap
pointer is moved towards the top of free memory the number of bytes corre-
sponding to the size of the new dynamic variable.

15.3 Mark and Release

When a dynamic variable is no longer required by the program, the standard
procedures Mark and Release are used to reclaim the memory allocated to
these variables. The Mark procedure assigns the value of the heap pointer to a
variable. The syntax of a call to Mark is:

 Mark(Var);

116 TURBO Pascal Language Manual

Mark and Release 15.3

where Var is a pointer variable. The Release procedure sets the heap pointer
to the address contained in its argument. The syntax is:

 Release(Var);

where Var is a pointer variable, previously set by Mark. Release thus discards
all dynamic variables above this address. It is not possible to release the
space used by variables in the middle of the heap.

The standard function MemAvail is available to determine the available space
on the heap at any given time. Further discussion is deferred to appendices A
and B.

15.4 Using Pointers

Supposing we have used the New procedure to create a series of records of
type PersonRecord (as in the example on the following page) and that the
field Next in each record points at the next PersonRecord created, then the
following statements will go through the list and write the contents of each
record (FirstPerson points to the first person in the list):

 while FirstPerson <> nil do
 with FirstPerson^ do
 begin
 Writeln(Name,' is a ',Job);
 FirstPerson := Next;
 end;

FirstPerson^.Name may be read as FirstPerson's.Name, i.e. the field Name in
the record pointed to by FirstPerson.

The following demonstrates the use of pointers to maintain a list of names
and related job desires. Names and job desires will be read in until a blank
name is entered. Then the entire list is printed. Finally, the memory used by
the list is released for other use. The pointer variable HeapTop is used only for
the purpose of recording and storing the initial value of the heap pointer. Its
definition as a ^Integer (pointer to integer) is thus totally arbitrary.

POINTER TYPES 117

15.4 Using Pointers

 procedure Jobs;
 type
 PersonPointer = ^PersonRecord;

 PersonRecord = record
 Name: string[50];
 Job: string[50];
 Next: PersonPointer;
 end;
 Var
 HeapTop: ^Integer;
 FirstPerson, LastPerson, Newperson: PersonPointer;
 Name: string[50];
 begin
 FirstPerson := nil;
 Mark(HeapTop);
 repeat
 Write('Enter name: ');
 Readln(Name);
 if Name <> '' then
 begin
 New(NewPerson);
 NewPerson^.Name := Name;
 Write('Enter profession: ');
 Readln(NewPerson^.Job);
 Writeln;
 if FirstPerson = nil then
 FirstPerson := NewPerson
 else
 LastPerson^.Next := Newperson;
 LastPerson := Newperson;
 LastPerson.Next := nil;
 end;
 until Name='';
 Writeln;
 while FirstPerson <> nil do
 with FirstPerson^ do
 begin
 Writeln(Name,' is a ',Job);
 FirstPerson := Next;
 end;
 Release(HeapTop);
 end.

118 TURBO Pascal Language Manual

Space Allocation 15.5

15.5 Space Allocation

The standard procedure GetMem is used to allocate space on the heap. Un-
like New, which allocates as much space as required by the type pointed to
by its argument, GetMem allows the programmer to control the amount of
space allocated. GetMem is called with two parameters:

 GetMem(PVar, I)

where PVar is any pointer variable, and I is an integer expression giving the
number of bytes to be allocated.

POINTER TYPES 119

15.5 Space Allocation

 Notes:

120 TURBO Pascal Language Manual

PROCEDURES AND FUNCTIONS 16

 16. PROCEDURES AND FUNCTIONS

A Pascal program consists of one or more blocks, each of which may again
consist of blocks, etc. One such block is a procedure, another is a function (in
common called subprograms). Thus, a procedure is a separate part of a pro-
gram, and it is activated from elsewhere in the program by a procedure state-
ment (see section 7.1.2). A function is rather similar, but it computes and re-
turns a value when its identifier, or designator, is encountered during execu-
tion (see section 6.2).

16.1 Parameters

Values may be passed to procedures and functions through parameters. Para-
meters provide a substitution mechanism which allows the logic of the sub-
program to be used with different initial values, thus producing different re-
sults.

The procedure statement or function designator which invokes the subpro-
gram may contain a list of parameters, called the actual parameters. These
are passed to the formal parameters specified in the subprogram heading. The
order of parameter passing is the order of appearance in the parameter lists.
Pascal supports two different methods of parameter passing: by value and by
reference, which determines the effect that changes of the formal parameters
have on the actual parameters.

When parameters are passed by value, the formal parameter represents a lo-
cal variable in the subprogram, and changes of the formal parameters have no
effect on the actual parameter. The actual parameter may be any expression,
including a variable, with the same type as the corresponding formal parame-
ter. Such parameters are called a value parameter and are declared in the
subprogram heading as in the following example. (This and the following ex-
amples show procedure headings; function headings are slightly different as
described in section 16.3.1.)

 procedure Example(Num1,Num2: Number; Str1,Str2: Txt);

Number and Txt are previously defined types (e.g. Integer and string[255]),
and Num1, Num2, Str1, and Str2 are the formal parameters to which the va-
lue of the actual parameters are passed. The types of the formal and the ac-
tual parameters must correspond.

PROCEDURES AND FUNCTIONS 121

16.1 Parameters

Notice that the type of the parameters in the parameter part must be speci-
fied as a previously defined type identifier. Thus, the construct:

 procedure Select(Model: array[1..500] of Integer);

is not allowed. Instead, the desired type should be defined in the type defini-
tion of the block, and the type identifier should then be used in the parameter
declaration:

 type
 Range = array[1..500] of Integer;

 procedure Select(Model: Range);

When a parameter is passed by reference, the formal parameter in fact repre-
sents the actual parameter throughout the execution of the subprogram. Any
changes made to the formal parameter is thus made to the actual parameter,
which must therefore be a variable. Parameters passed by reference are cal-
led a variable parameters, and are declared as follows:

 procedure Example(Var Num1,Num2: Number)

Value parameters and variable parameters may be mixed in the same proce-
dure as in the following example:

 procedure Example(Var Num1,Num2: Number; Str1,Str2: Txt);

in which Num1 and Num2 are variable parameters and Str1 and Str2 are va-
lue parameters.

All address calculations are done at the time of the procedure call. Thus, if a
variable is a component of an array, its index expression(s) are evaluated
when the subprogram is called.

Notice that file parameters must always be declared as variable parameters.

When a large data structure, such as an array, is to be passed to a subpro-
gram as a parameter, the use of a variable parameter will save both time and
storage space, as the only information then passed on to the subprogram is
the address of the actual parameter. A value parameter would require storage
for an extra copy of the entire data structure, and the time involved in copying
it.

122 TURBO Pascal Language Manual

Relaxations on Parameter Type Checking 16.1.1

16.1.1 Relaxations on Parameter Type Checking

Normally, when using variable parameters, the formal and the actual parame-
ters must match exactly. This means that subprograms employing variable
parameters of type String will accept only strings of the exact length defined
in the subprogram. This restriction may be overridden by the V compiler di-
rective. The default active state {$V+} indicates strict type checking, whereas
the passive state {$V-} relaxes the type checking and allows actual parame-
ters of any string length to be passed, irrespective of the length of the formal
parameters.

Example:
 program NSA;
 {this program must be compiled with the $V- directive}
 {$V-}
 type
 WorkString = string[255];
 Var
 Line1: string[80];
 Line2: string[100];
 procedure Encode(Var LineToEncode: WorkString);
 Var I: Integer;
 begin
 for I := 1 to Length(LineToEncode) do
 LineToEncode[I] := Chr(Ord(LineToEncode[I])-30);
 end;
 begin
 Line1 := 'This is a secret message';
 Encode(Line1);
 Line2 := 'Here is another (longer) secret message';
 Encode(Line2);
 end.

16.1.2 Untyped Variable Parameters

If the type of a formal parameter is not defined, i.e. the type definition is omit-
ted from the parameter section of the subprogram heading, then that parame-
ter is said to be untyped. Thus, the corresponding actual parameter may be
any type.

PROCEDURES AND FUNCTIONS 123

16.1.2 Untyped Variable Parameters

The untyped formal parameter itself is incompatible with all types, and it may
therefore be used only in contexts where the data type is of no significance,
e.g. as a parameter to Addr, BlockRead/Write, FillChar, or Move, or as the ad-
dress specification of absolute variables.

The SwitchVar procedure in the following example demonstrates the use of
untyped parameters. It moves the contents of the variable A1 to A2 and the
contents of A2 to A1.

 procedure SwitchVar(Var A1p,A2p; Size: Integer);
 type
 A = array[1..MaxInt] of Byte;
 Var
 A1: A absolute A1p;
 A2: A absolute A2p;
 Tmp: Byte;
 Count: Integer;
 begin
 for Count := 1 to Size do
 begin
 Tmp := A1[Count];
 A1[Count] := A2[Count];
 A2[Count] := Tmp;
 end;
 end;

Assuming the declarations:

 type
 Matrix = array[1..50,1..25] of Real;
 Var
 TestMatrix,BestMatrix: Matrix;

then SwitchVar may be used to switch values between the two matrices:

 SwitchVar(TestMatrix,BestMatrix, SizeOf(Matrix));

124 TURBO Pascal Language Manual

Procedures 16.2

16.2 Procedures

A procedure may be either pre-declared (or 'standard') or user-declared, i.e.
declared by the programmer. Pre-declared procedures are parts of the
TURBO Pascal system and may be called with no further declaration. A user-
declared procedure may be given the name of a standard procedure; but that
standard procedure then becomes inaccessible within the scope of the user
declared procedure.

16.2.1 Procedure Declaration

A procedure declaration consists of a procedure heading followed by a block
which consists of a declaration part and a statement part.

The procedure heading consists of the reserved word procedure followed by
an identifier which becomes the name of the procedure, optionally followed
by a formal parameter list as described in section 16.1.

Examples:
 procedure LogOn;
 procedure Position(X,Y: Integer);
 procedure Compute(Var Data: Matrix; Scale: Real);

The declaration part of a procedure has the same form as that of a program.
All identifiers declared in the formal parameter list and the declaration part
are local to that procedure, and to any procedures within it. This is called the
scope of an identifier, outside which they are not known. A procedure may
reference any constant, type, variable, procedure, or function defined in an
outer block.

The statement part specifies the action to be executed when the proce-
dure is invoked, and it takes the form of a compound statement (see section
7.2.1). If the procedure identifier is used within the statement part of the pro-
cedure itself, the procedure will execute recursively. (CP/M-80 only: Notice
that the A compiler directive must be passive {$A-} when recursion is used,
see appendix E.)

The next example shows a program which uses a procedure and passes a pa-
rameter to this procedure. As the actual parameter passed to the procedure is
in some instances a constant (a simple expression), the formal parameter
must be a value parameter.

PROCEDURES AND FUNCTIONS 125

16.2.1 Procedure Declaration

 program Box;
 Var
 I: Integer;
 procedure DrawBox(X1,Y1,X2,Y2: Integer);
 Var I: Integer;
 begin
 GotoXY(X1,Y1);
 for I := X1 to X2 do Write('-');
 GotoXY(X1,Y1+1);
 for I := Y1+1 to Y2 do
 begin
 GotoXY(X1,I); Write('!');
 GotoXY(X2,I); Write('!');
 end;
 GotoXY(X1,Y2);
 for I := X1 to X2 do Write('-');
 end; { of procedure DrawBox }
 begin
 ClrScr;
 for I := 1 to 5 do DrawBox(I*4,I*2,10*I,4*I);
 DrawBox(1,1,80,23);
 end.

Often the changes made to the formal parameters in the procedure should
also affect the actual parameters. In such cases variable parameters are used,
as in the following example:

 procedure Switch(Var A,B: Integer);
 Var Tmp: Integer;
 begin
 Tmp := A; A := B; B := Tmp;
 end;

When this procedure is called by the statement:

 Switch(I,J);

the values of I and J will be switched. If the procedure heading in Switch
was declared as:

procedure Switch(A,B: Integer);

i.e. with a value parameter, then the statement Switch(I,J) would not
change I and J.

126 TURBO Pascal Language Manual

Standard Procedures 16.2.2

16.2.2 Standard Procedures

TURBO Pascal contains a number of standard procedures. These are:

 1) string handling procedures (described in section 9.5),
 2) file handling procedures (described in sections 14.2, 14.5.1, and
 14.7.1.
 3) procedures for allocation of dynamic variables (described in sections
 15.2 and 15.5), and
 4) input and output procedures (described in section 14.6).

In addition to these, the following standard procedures are available, provided
that the associated commands have been installed for your terminal (see sec-
tion 1.6):

16.2.2.1 ClrEol

Syntax: ClrEol

Clears all characters from the cursor position to the end of the line without
moving the cursor.

16.2.2.2 ClrScr

Syntax: ClrScr

Clears the screen and places the cursor in the upper left-hand corner. Beware
that some screens also reset the video-attributes when clearing the screen,
possibly disturbing any user-set attributes.

16.2.2.3 CrtInit

Syntax: CrtInit

Sends the Terminal Initialization String defined in the installation procedure
to the screen.

PROCEDURES AND FUNCTIONS 127

16.2.2.4 CrtExit

16.2.2.4 CrtExit

Syntax: CrtExit

Sends the Terminal Reset String defined in the installation procedure to the
screen.

16.2.2.5 Delay

Syntax: Delay(Time)

The Delay procedure creates a loop which runs for approx. as many millise-
conds as defined by its argument Time which must be an integer. The exact
time may vary somewhat in different operating environments.

16.2.2.6 DelLine

Syntax: DelLine

Deletes the line containing the cursor and moves all lines below one line up.

16.2.2.7 InsLine

Syntax: InsLine

Inserts an empty line at the cursor position. All lines below are moved one line
down and the bottom line scrolls off the screen.

16.2.2.8 GotoXY

Syntax: GotoXY(Xpos,Ypos)

Moves the cursor to the position on the screen specified by the integer ex-
pressions Xpos (horizontal value, or row) and Ypos (vertical value, or column).
The upper left corner (home position) is (1,1).

128 TURBO Pascal Language Manual

LowVideo 16.2.2.9

16.2.2.9 LowVideo

Syntax: LowVideo

Sets the screen to the video attribute defined as 'Start of Low Video' in the in-
stallation procedure, i.e. 'dim' characters.

16.2.2.10 NormVideo

Syntax: NormVideo

Sets the screen to the video attribute defined as 'Start of Normal Video' in the
installation procedure, i.e. the 'normal' screen mode.

16.2.2.11 Randomize

Syntax: Randomize

Initializes the random number generator with a random value.

16.2.2.12 Move

Syntax: Move(var1,var2,Num)

Does a mass copy directly in memory of a specified number of bytes. var1 and
var2 are two variables of any type, and Num is an integer expression. The pro-
cedure copies a block of Num bytes, starting at the first byte occupied by var1
to the block starting at the first byte occupied by var2. You may notice the ab-
sence of explicit 'moveright' and 'moveleft' procedures. This is because Move
automatically handles possible overlap during the move process.

16.2.2.13 FillChar

Syntax: FillChar(Var,Num,Value)

Fills a range of memory with a given value. Var is a variable of any type, Num
is an integer expression, and Value is an expression of type Byte or Char. Num
bytes, starting at the first byte occupied by Var, are filled with the value Value.

PROCEDURES AND FUNCTIONS 129

16.3 Functions

16.3 Functions

Like procedures, functions are either standard (pre-declared) or declared by
the programmer.

16.3.1 Function Declaration

A function declaration consists of a function heading and a block which is a
declaration part followed by a statement part.

The function heading is equivalent to the procedure heading, except that the
heading must define the type of the function result. This is done by adding a
colon and a type to the heading as shown here:

 function KeyHit: Boolean;
 function Compute(Var Value: Sample): Real;
 function Power(X,Y: Real): Real;

The result type of a function must be a scalar type (i.e. Integer, Real, Boolean,
Char, declared scalar or subrange), a string type, or a pointer type.

The declaration part of a function is the same as that of a procedure.

The statement part of a function is a compound statement as described in
section 7.2.1. Within the statement part at least one statement assigning a
value to the function identifier must occur. The last assignment executed de-
termines the result of the function. If the function designator appears in the
statement part of the function itself, the function will be invoked recursively.
(CP/M-80 only: Notice that the A compiler directive must be passive {$A-}
when recursion is used, see appendix E.)

130 TURBO Pascal Language Manual

Function Declaration 16.3.1

The following example shows the use of a function to compute the sum of a
row of integers from I to J.

 function RowSum(I,J: Integer): Integer;
 function SimpleRowSum(S: Integer): Integer;
 begin
 SimpleRowSum := S*(S+1) div 2;
 end;
 begin
 RowSum := SimpleRowSum(J)-SimpleRowSum(I-1);
 end;

The function SimpleRowSum is nested within the function RowSum.
SimpleRowSum is therefore only available within the scope of RowSum.

The following program is the classical demonstration of the use of a re-
cursive function to calculate the factorial of an integer number:

 {$A-}
 program Factorial;
 Var Number: Integer;
 function Factorial(Value: Integer): Real;
 begin
 if Value = 0 then Factorial := 1
 else Factorial := Value * Factorial(Value-1);
 end;
 begin
 Read(Number);
 Writeln(^M,Number,'! = ',Factorial(Number));
 end.

Note that the type used in the definition of a function type must be previously
specified as a type identifier. Thus, the construct:

function LowCase(Line: UserLine): string[80];

is not allowed. Instead, a type identifier should be associated with the type
string[80], and that type identifier should then be used to define the function
result type, e.g.:

 type
 Str80 = string[80];

 function LowCase(Line: UserLine): Str80;

PROCEDURES AND FUNCTIONS 131

16.3.1 Function Declaration

Because of the implementation of the standard procedures Write and Writeln,
a function using any of the standard procedures Read, Readln, Write, or Wri-
teln, must never be called by an expression within a Write or Writeln state-
ment. In 8-bit systems this is also true for the standard procedures Str and
Val.

16.3.2 Standard Functions

The following standard (pre-declared) functions are implemented in TURBO
Pascal:

 1) string handling functions (described in section 9.5),
 2) file handling functions (described in section 14.2 and 14.5.1), and
 3) pointer related functions (described in sections 15.2 and 15.5).

16.3.2.1 Arithmetic Functions

16.3.2.1.1 Abs

Syntax: Abs(Num)

Returns the absolute value of Num. The argument Num must be either Real
or Integer, and the result is of the same type as the argument.

16.3.2.1.2 ArcTan

Syntax: ArcTan(Num)

Returns the angle, in radians, whose tangent is Num. The argument X must
be either Real or Integer, and the result is Real.

16.3.2.1.3 Cos

Syntax: Cos(Num)

Returns the cosine of Num. The argument Num is expressed in radians, and
its type must be either Real or Integer. The result is of type Real.

132 TURBO Pascal Language Manual

Cos 16.3.2.1.3

16.3.2.1.4 Exp

Syntax: Exp(Num)

Returns the exponential of Num, i.e. e to the power Num. The argument Num must
be either Real or Integer, and the result is Real.

16.3.2.1.5 Frac

Syntax: Frac(Num)

Returns the fractional part of Num, i.e. Frac(Num) = Num - Int(Num). The
argument Num must be either Real or Integer, and the result is Real.

16.3.2.1.6 Int

Syntax: Int(Num)

Returns the integer part of Num, i.e. the greatest integer number less than or
equal to Num, if Num >= 0, or the smallest integer number greater than or
equal to Num, if Num < 0. The argument Num must be either Real or Integer,
and the result is Real.

16.3.2.1.7 Ln

Syntax: Ln(Num)

Returns the natural logarithm of Num. The argument Num must be either
Real or Integer, and the result is Real.

16.3.2.1.8 Sin

Syntax: Sin(Num)

Returns the sine of Num. The argument Num is expressed in radians, and its
type must be either Real or Integer. The result is of type Real.

PROCEDURES AND FUNCTIONS 133

16.3.2.1.9 Sqr

16.3.2.1.9 Sqr

Syntax: Sqr(Num)

Returns the square of Num, i.e. Num*Num. The argument Num must be eit-
her Real or Integer, and the result is of the same type as the argument.

16.3.2.1.10 Sqrt

Syntax: Sqrt(Num)

Returns the square root of Num. The argument Num must be either Real or
Integer, and the result is Real.

16.3.2.2 Scalar Functions

16.3.2.2.1 Pred

Syntax: Pred(Num)

Returns the predecessor of Num (if it exists). Num is of any scalar type.

16.3.2.2.2 Succ

Syntax: Succ(Num)

Returns the successor of Num (if it exists). Num is of any scalar type.

16.3.2.2.3 Odd

Syntax: Odd(Num)

Returns boolean True if Num is an odd number, and False if Num is even.
Num must be of type Integer.

134 TURBO Pascal Language Manual

Transfer Functions 16.3.2.3

16.3.2.3 Transfer Functions

The transfer functions are used to convert values of one scalar type to that of
another scalar type. In addition to the following functions, the retype facility
described in section 8.3 serves this purpose.

16.3.2.3.1 Chr

Syntax: Chr(Num)

Returns the character with the ordinal value given by the integer expression
Num. Example: Chr(65) returns the character 'A'.

16.3.2.3.2 Ord

Syntax: Ord(Var)

Returns the ordinal number of the value Var in the set defined by the type Var.
Ord(Var) is equivalent to Integer(Var) (see Type Conversions in section 8.3.
Var may be of any scalar type, except Real, and the result is of type Integer.

16.3.2.3.3 Round

Syntax: Round(Num)

Returns the value of Num rounded to the nearest integer as follows:
 if Num >= 0, then Round(Num) = Trunc(Num + 0.5), and
 if Num < 0, then Round(Num) = Trunc(Num - 0.5).
Num must be of type Real, and the result is of type Integer.

16.3.2.3.4 Trunc

Syntax: Trunc(Num)

Returns the greatest integer less than or equal to Num, if Num >= 0, or the
smallest integer greater than or equal to Num, if Num < 0. Num must be of
type Real, and the result is of type Integer.

PROCEDURES AND FUNCTIONS 135

16.3.2.4 Miscellaneous Standard Functions

16.3.2.4 Miscellaneous Standard Functions

16.3.2.4.1 Hi

Syntax: Hi(I)

The low order byte of the result contains the high order byte of the value of
the integer expression I. The high order byte of the result is zero. The type of
the result is Integer.

16.3.2.4.2 KeyPressed

Syntax: KeyPressed

Returns boolean True if a key has been pressed at the console, and False if no
key has been pressed. The result is obtained by calling the operating system
console status routine.

16.3.2.4.3 Lo

Syntax: Lo(I)

Returns the low order byte of the value of the integer expression I with the
high order byte forced to zero. The type of the result is Integer.

16.3.2.4.4 Random

Syntax: Random

Returns a random number greater than or equal to zero and less than one.
The type is Real.

16.3.2.4.5 Random(Num)

Syntax: Random(Num)

Returns a random number greater than or equal to zero and less than Num.
Num and the random number are both Integers.

136 TURBO Pascal Language Manual

SizeOf 16.3.2.4.6

16.3.2.4.6 SizeOf

Syntax: SizeOf(Name)

Returns the number of bytes occupied in memory by the variable of type
Name. The result is of type Integer.

16.3.2.4.7 Swap

Syntax: Swap(Num)

The Swap function exchanges the high and low order bytes of its integer ar-
gument Num and returns the resulting value as an integer.

Example: Swap($1234) returns $3412 (values in hex for clarity).

16.3.2.4.8 UpCase

Syntax: UpCase(ch)

Returns the upper case equivalent of its argument ch which must be of type
Char. If no upper case equivalent exists, the argument is returned unchanged.

PROCEDURES AND FUNCTIONS 137

16.4 Forward References

16.4 Forward References

A subprogram is forward declared by specifying its heading separately from
the block. This separate subprogram heading is exactly as the normal head-
ing, except that it is terminated by the reserved word forward. The block fol-
lows later within the same declaration part. Notice that the block is initiated
by a copy of the heading, specifying only the name and no parameters, types,
etc.

Example:

 program Catch22;
 Var
 X: Integer;
 function Up(Var I: Integer): Integer; forward;
 function Down(Var I: Integer): Integer;
 begin
 I := I div 2; Writeln(I);
 if I <> 1 then I := Up(I);
 end;
 function Up;
 begin
 while I mod 2 <> 0 do
 begin
 I := I*3+1; writeln(I);
 end;
 I := Down(I);
 end;
 begin
 Write('Enter any integer: ');
 Readln(X);
 X := Up(X);
 Write('Ok. Program stopped again.');
 end.

When the program is executed and if you enter e.g. 6 it outputs:

138 TURBO Pascal Language Manual

Forward References 16.4

+--+
| |
| 3 |
| 10 |
| 5 |
| 16 |
| 8 |
| 4 |
| 2 |
| 1 |
| Ok. Program stopped again. |
| |
+--+

The above program is actually a more complicated version of the following

program:

 program Catch222;
 Var
 X: Integer;
 begin
 Write('Enter any integer: ');
 Readln(X);
 while X <> 1 do
 begin
 if X mod 2 = 0 then X := X div 2 else X := X*3+1;
 Writeln(X);
 end;
 Write('Ok. Program stopped again.');
 end.

It may interest you to know that it cannot be proved if this small and very
simple program actually will stop for any integer!

PROCEDURES AND FUNCTIONS 139

16.4 Forward References

 Notes:

140 TURBO Pascal Language Manual

INCLUDING FILES 17

 17. INCLUDING FILES

The fact that the TURBO editor performs editing only within memory limits
the size of source code handled by the editor. The I compiler directive can be
used to circumvent this restriction, as it provides the ability to split the source
code into smaller 'lumps' and put it back together at compile-time. The in-
clude facility also aids program clarity, as commonly used subprograms, once
tested and debugged, may be kept as a 'library' of files from which the
necessary files can be included in any other program.

The syntax for the I compiler directive is:

 {$I filename}

where filename is any legal file name. Spaces are ignored and lower case let-
ters are translated to upper case. If no file type is specified, the default type
.PAS is assumed. This directive must be specified on a line by itself.

Examples:
 {$Ifirst.pas}
 {$i StdProc}
 {$I COMPUTE.MOD}

To demonstrate the use of the include facility, let us assume that in your 'li-
brary' of commonly used procedures and functions you have a file called
STUPCASE.FUN. It contains the function StUpCase which is called with a
character or a string as parameter and returns the value of this parameter
with any lower case letters set to upper case.

File STUPCASE.FUN:

 function StUpCase(St: AnyString): AnyString;
 Var I: Integer;
 begin
 for I := 1 to Length(St) do
 St[I] := UpCase(St[I]);
 StUpCase := St;
 end;

In any future program you write which requires this function to convert strings
to upper case letters, you need only include the file at compile-time instead of
duplicating it into the source code:

INCLUDING FILES 141

17 INCLUDING FILES

 program Include Demo;
 type
 InData= string[80];
 Anystring= string[255];
 Var
 Answer: InData;
 {$I STUPCASE.FUN}
 begin
 ReadLn(Answer);
 Writeln(StUpCase(Answer));
 end.

This method not only is easier and saves space; it also makes the task of
keeping programs updated quicker and safer, as any change to a 'library' rou-
tine will automatically affect all programs including this routine.

Notice that TURBO Pascal allows free ordering, and even multiple occur-
rences, of the individual sections of the declaration part. You may thus e.g.
have a number of files containing various commonly used type definitions in
your 'library' and include the ones required by different programs.

All compiler directives except B and C are local to the file in which they ap-
pear, i.e. if a compiler directive is set to a different value in an included file, it
is reset to its original value upon return to the including file. B and C directi-
ves are always global. Compiler directives are described in appendix E.

Include files cannot be nested, i.e. one include file cannot include yet another
file and then continue processing.

142 TURBO Pascal Language Manual

CP/M-80 A

 A. CP/M-80

This appendix describes features of TURBO Pascal specific to the 8-bit imple-
mentation. It presents two kinds of information:

1) Things you must know to make efficient use of TURBO Pascal. These are
described in section A.1

2) The remaining sections describe things which are only of interest to expe-
rienced programmers, e.g. calling machine language routines, technical
aspects of the compiler, etc.

A.1 compiler Options

The O command selects the following menu on which you may view and
change some default values of the compiler. It also provides a helpful function
to find runtime errors in programs compiled into object code files.

+--+
| |
| compile -> Memory |
| Com-file |
| cHn-file |
| |
| Find run-time error Quit |
| |
+--+
 Figure A-1: Options Menu

A.1.1 Memory / Com file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where to put
the code which results from the compilation.

Memory is the default mode. When active, code is produced in memory and
resides there ready to be activated by a Run command.

CP/M-80 143

A.1.1 Memory/Com file /cHn-file

Com-file is selected by pressing C. The arrow moves to point to this line.
When active, code is written to a file with the same name as the Work file (or
Main file, if specified) and the file type .COM. This file contains the program
code and Pascal runtime library, and may be activated by typing its name at
the console. Programs compiled this way may be larger than programs com-
piled in memory, as the program code itself does not take up memory during
compilation, and program code starts at a lower address.

cHain-file is selected by pressing H. The arrow moves to point to this line.
When active, code is written to a file with the same name as the Work file (or
Main file, if specified) and the file type .CHN. This file contains the program
code but no Pascal library and must be activated from another TURBO Pascal
program with the Chain procedure (see section A.10).

When Com or cHn mode is selected, the menu is expanded with the follow-
ing two lines:

+--+
| |
| Start address: XXXX (min YYYY) |
| End address: XXXX (max YYYY) |
| |
+--+
 Figure A-2: Start and End Addresses

The use of these additional commands are explained in sections A.1.2 and
A.l.3.

A.1.2 Start Address

The Start address specifies the address (in hexadecimal) of the first byte of
the code. This is normally the end address of the Pascal library plus one, but
may be changed to a higher address if you want to set space aside e.g. for
absolute variables to be shared by a series of chained programs.

When you enter an S, you are prompted to enter a new Start address. If you
just hit <RETURN>, the minimum value is assumed. Don't set the Start 'ad-
dress to anything less than the minimum value, as the code will then over-
write part of the Pascal library.

144 TURBO Pascal Language Manual

End Address A.1.3

A.1.3 End Address

The End address specifies the highest address available to the program (in
hexadecimal). The value in parentheses indicates the top of the TPA on your
computer, i.e. BDOS minus one. The default setting is 700 to 1000 bytes less
to allow space for the loader which resides just below BDOS when executing
programs from TURBO.

If compiled programs are to run in a different environment, the End address
may be changed to suit the TPA size of that system. If you anticipate your
programs to run on a range of different computers, it will be wise to set this
value relatively low, e.g. Cl00 (48K), or even Al00 (40K) if the program is to
run under MP/M.

When you enter an E, you are prompted to enter an End address. If you just hit
<RETURN>, the default value is assumed (i.e. top of TPA less 700 to 1000
bytes). If you set the End address higher than this, the resulting programs
cannot be executed from TURBO, as they will overwrite the TURBO loader;
and if you set it higher than the TPA top, the resulting programs will over-
write part of BDOS if run on your machine.

A.1.4 Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs, the
editor is invoked, and the error is automatically pointed out. This, of course, is
not possible if the program is in a .COM file or a .CHN file. Run time errors
then print out the error code and the value of the program counter at the time
of the error, e.g.:

+--+
| |
| Run-time error 0l, PC=1B56 |
| Program aborted |
| |
+--+
 Figure A-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the F com-
mand on the Options menu. When prompted for the address, enter the ad-
dress given by the error message:

CP/M-80 145

A.1.4 Find Runtime Error

+--+
| |
| Enter PC: 1B56 |
| |
+--+
 Figure A-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if the er-
ror had occurred while running the program in memory.

A.2 Standard Identifiers

The following standard identifiers are unique to the CP/M-80 implementa-
tion:

 Bios Bdos RecurPtr
 BiosHL BdosHL StackPtr

A.3 Absolute Variables

Variables may be declared to reside at specific memory addresses, and are
then called absolute. This is done by adding the reserved word absolute and
an address expressed by an integer constant to the variable declaration.

Example:
 var
 IObyte: Byte absolute $0003;
 CmdLine: string[127] absolute $80;

Absolute may also be used to declare a variable "on top" of another variab-
le, i.e. that a variable should start at the same address as another variable.
When absolute is followed by the variable (or parameter) identifier, the new
variable will start at the address of that variable (or parameter).

Example:
 var
 Str: string[32];
 StrLen: Byte absolute Str;

146 TURBO Pascal Language Manual

Absolute Variables A.3

The above declaration specifies that the variable StrLen should start at the
same address as the variable Str, and since the first byte of a string variable
gives the length of the string, StrLen will contain the length of Str. Notice that
only one identifier may be specified in an absolute declaration, i.e. the cons-
truct

 Ident1, Ident2: Integer absolute $8000

is illegal. Further details on space allocation for variables are given in sections
A.l5 and A.16.

A.4 Addr Function

Syntax: Addr(name)

Returns the address in memory of the first byte of the type, variable, pro-
cedure, or function with the identifier name. If name is an array, it may be
subscripted, and if name is a record, specific fields may be selected. The value
returned is of type Integer.

A.5 Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem and
Port, which are used to directly access CPU memory and data ports.

A.5.1 Mem Array

The predeclared array Mem is used to access memory. Each component of
the array is a Byte, and indexes correspond to addresses in memory. The in-
dex type is Integer. When a value is assigned to a component of Mem, it is
stored at the address given by the index expression. When the Mem array is
used in an expression, the byte at the address specified by the index is used.

Example:
 Mem[WsCursor] := 2;
 Mem[WsCursor+1] := $1B;
 Mem[WsCursor+2] := Ord('~');
 IObyte := Mem[3];
 Mem[Addr+Offset] := Mem[Addr];

CP/M-80 147

A.5.2 Port Array

A.5.2 Port Array

The Port array is used to access the data ports of the Z-80 CPU. Each ele-
ment of the array represents a data port with indexes corresponding to port
numbers. As data ports are selected by 8-bit addresses, the index type is
Byte. When a value is assigned to a component of Port, it is output to the port
specified. When a component of Port is referenced in an expression, its value
is input from the port specified.

The use of the port array is restricted to assignment and reference in ex-
pressions only, i.e. components of Port cannot function as variable parame-
ters to procedures and functions. Furthermore, operations referring to the en-
tire Port array (reference without index) are not allowed.

A.6 Array Subscript Optimization

The X compiler directive allows the programmer to select whether array sub-
scription should be optimized with regard to execution speed or to code size.
The default mode is active, i.e. {$X+}, which causes execution speed op-
timization. When passive, i.e. {$X-}, the code size is minimized.

A.7 With Statements

The default 'depth' of nesting of with statements is 2, but the W directive
may be used to change this value to between 0 and 9. For each block, with
statements require two bytes of storage for each nesting level allowed. Keep-
ing the nesting to a minimum may thus greatly affects the size of the data
area in programs with many subprograms.

A.8 Pointer Related Items

A.8.1 MemAvail

The standard function MemAvail is available to determine the available space
on the heap at any given time. The result is an Integer, and if more than
32767 bytes is available, MemAvail returns a negative number. The correct
number of free bytes is then calculated as 65536.0 + MemAvail. Notice the
use of a real constant to generate a Real result, as the result is greater than
GMaxlnt. Memory management is discussed in further detail in section A.16.

148 TURBO Pascal Language Manual

Pointers and Integers A.8.2

A.8.2 Pointers and Integers

The standard functions Ord and Ptr provide direct control of the address con-
tained in a pointer. Ord returns the address contained in its pointer argument
as an Integer, and Ptr converts its Integer argument into a pointer which is
compatible with all pointer types.

These functions are extremely valuable in the hands of an experienced pro-
grammer as they allow a pointer to point to anywhere in memory. If used ca-
relessly, however, they are very dangerous, as a dynamic variable may be
made to overwrite other variables, or even program code.

A.9 External Subprograms

The reserved word external is used to declare external procedures and func-
tions, typically procedures and functions written in machine code.

An external subprogram has no block, i.e. no declaration part and no state-
ment part. Only the subprogram heading is specified, immediately followed by
the reserved word external and an integer constant defining the memory ad-
dress of the subprogram:

 procedure DiskReset; external $EC00;
 function IOstatus: boolean; external $D123

Parameters may be passed to external subprograms, and the syntax is exactly
the same as that of calls to ordinary procedures and functions:

 procedure Plot(X,Y: Integer); external $F003;
 procedure QuickSort(var List: PartNo); external $1C00;

Parameter passing to external subprograms is discussed further in section A.-
15.3.

A.10 Chain and Execute

TURBO Pascal provides two standard procedures: Chain and Execute which
allow you to activate other programs from a TURBO program. The syntax of
these procedure calls is:

Chain(FilVar)
Execute(FilVar)

CP/M-80 149

A.10 Chain and Execute

where FilVar is a file variable of any type, previously assigned to a disk file
with the standard procedure Assign. If the file exists, it is loaded into memory
and executed.

The Chain procedure is used only to activate special TURBO Pascal .CHN fi-
les, i.e. files compiled with the cHn-file option selected on the Options menu
(see section A.1.1). Such a file contains only program code; no Pascal library.
It is loaded into memory and executed at the start address of the current pro-
gram, i.e. the address specified when the current program was compiled. It
then uses the Pascal library already present in memory. Thus, the current pro-
gram and the chained program must use the same start address.

The Execute procedure may be used to execute any .COM file, i.e. any file
containing executable code. This could be a file created by TURBO Pascal
with the Com-option selected on the Options menu (see section A.1.1). The
file is loaded and executed at address $100, as specified by the CP/M stan-
dard.

If the disk file does not exist, an I/O error occurs. This error is treated as de-
scribed in section 14.8. If the I compiler directive is passive ({$I-}) program
execution continues with the statement following the failed Chain or Execute
statement, and the IOresult function must be called prior to further I/O.

Data can be transferred from the current program to the chained program ei-
ther by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as the very
first variables in both programs, and they must be listed in the same order in
both declarations. Furthermore, both programs must be compiled to the same
memory size (see section A.1.3). When these conditions are satisfied, the va-
riables will be placed at the same address in memory by both programs, and
as TURBO Pascal does not automatically initialize its variables, they may be
shared.

150 TURBO Pascal Language Manual

Chain and Execute A.10

Example:
Program MAIN.COM:

 program Main;
 var
 Txt: string[80];
 CntPrg: file;
 begin
 Write('Enter any text: '); Readln(Txt);
 Assign(CntPrg, 'ChrCount.chn');
 Chain(CntPrg);
 end.

Program CHRCOUNT.CHN:

 program ChrCount;
 var
 Txt: string[80];
 NoOfChar,
 NoOfUpc,
 I: Integer;

 begin
 NoOfUpc := 0;
 NoOfChar := Length(Txt);
 for I := 1 to length(Txt) do
 if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);
 Write('No of characters in entry: ',NoOfChar);
 Writeln('. No of upper case characters: ', NoOfUpc,'.');
 end.

Note that neither Chain nor Execute can be used in direct mode, i.e. from a
program run with the compiler options switch in position Memory (section
A.l.1).

A program can determine whether it was invoked by Chain or Execute by exa-
mining the value of the byte at address $80 (which normally contains the
length of the CP/M command line). If this byte is $FF (255), the program was
activated by Chain or Execute, otherwise it was activated from the operating
system. Care should be taken if executing non-TURBO programs that they do
not use the CP/M command line when invoked, as the $FF value in address
$80 may otherwise cause confusion.

CP/M-80 151

A.11 In-line Machine Code

A.11 In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way of in-
serting machine code instructions directly into the program text. An inline sta-
tement consists of the reserved word inline followed by one or more con-
stants, variable identifiers, or location counter references, separated by slash-
es and enclosed in parentheses.

The constants may be either literal constants or constant identifiers, and they
must be of type Integer. Literals generate one byte of code if within the range
0..255 ($00..$FF), otherwise two bytes in the standard byte reversed format.
Constant identifiers always generate two bytes of code.

A variable identifier generates two bytes of code (in byte reversed format)
containing the memory address of the variable.

A location counter reference consists of an asterisk, optionally followed by an
offset consisting of a plus or a minus sign and an integer constant. An aste-
risk alone generates two bytes of code (in byte reversed order containing
the current location counter value. If the asterisk is followed by an offset, it is
added or subtracted before coding the address.

The following example of an inline statement generates machine code that
will convert all characters in its string argument to upper case.

 procedure UpperCase(var Strg: Str); {Str is type String[255]}
 begin
 inline ($2A/Strg/ { LD HL,(Strg) }
 $46/ { LD B,(HL) }
 $04/ { INC B }
 $05/ { L1: DEC B }
 $CA/*+20/ { JP Z,L2 }
 $23/ { INC HL }
 $7E/ { LD A,(HL) }
 $FE/$61/ { CP 'a' }
 $DA/*-9/ { JP C,L1 }
 $FE/$7B/ { CP 'z'+1 }
 $D2/*-14/ { JP NC,L1 }
 $D6/$20 { SUB 20H }
 $77/ { LD (HL),A }
 $C3/*-20); { JP L1 }
 { L2: EQU $ }
 end;

152 TURBO Pascal Language Manual

In-line Machine Code A.ll

Inline statements may be freely mixed with other statements throughout the
statement part of a block, and inline statements may use all CPU registers.
Note, however, that the contents of the stack pointer register (SP) must be
the same on exit as on entry.

A.12 CP/M Function Calls

For the purpose of calling CP/M BDOS and BIOS routines, TURBO Pascal
introduces two standard procedures: Bdos and Bios, and four standard func-
tions: Bdos, BdosHL, Bios, and BiosHL.

Details on BDOS and BIOS routines are found in the CP/M Operating System
Manual published by Digital Research.

A.12.1 Bdos procedure and function

Syntax: Bdos(Func {,Param})

The Bdos procedure is used to invoke CP/M BDOS routines. Func and Pa-
ram are integer expressions. Func denotes the number of the called routine
and is loaded into the C register. Param is optional and denotes a parameter
which is loaded into the DE register pair. A call to address 5 then invokes the
BDOS.

The Bdos function is called like the procedure and returns an Integer result
which is the value returned by the BDOS in the A register.

A.12.2 BdosHL function

Syntax: BdosHL(Func {,Param})

This function is exactly similar to the Bdos function above, except that the re-
sult is the value returned in the HL register pair.

CP/M-80 153

A.12.3 Bios procedure and function

A.12.3 Bios procedure and function

Syntax: Bios(Func {,Param))

The Bios procedure is used to invoke BIOS routines. Func and Param are in-
teger expressions. Func denotes the number of the called routine, with 0
meaning the WBOOT routine, 1 the CONST routine, etc. I.e. the address of
the called routine is Func * 3 plus the WBOOT address contained in address-
es 1 and 2. Param is optional and denotes a parameter which is loaded into
the BC register pair prior to the call.

The Bios function is called like the procedure and returns an integer result
which is the value returned by the BIOS in the A register.

A.12.4 BiosHL function

Syntax: BiosHL(Func {, Param })

This function is exactly similar to the Bios function above, except that the re-
sult is the value returned in the HL register pair.

154 TURBO Pascal Language Manual

User Written I/O Drivers A.13

A.13 User Written I/O Drivers

For some applications it is practical for a programmer to define his own input
and output drivers, i.e. routines which perform input and output of characters
to and from external devices. The following drivers are part of the TURBO
environment, and used by the standard I/O drivers (although they are not
available as standard procedures or functions):

 function ConSt: boolean;
 function ConIn: Char;
 procedure ConOut(Ch: Char);
 procedure LstOut(Ch: Char);
 procedure AuxOut(Ch: Char);
 function AuxIn: Char;
 procedure UsrOut(Ch: Char);
 function UsrIn: Char;

The ConSt routine is called by the function KeyPressed, the ConIn and Con-
Out routines are used by the CON:, TRM:, and KBD: devices, the LstOut rou-
tine is used by the LST: device, the AuxOut and AuxIn routines are used by
the AUX: device, and the UsrOut and UsrIn routines are used by the USR: de-
vice.

By default, these drivers use the corresponding BIOS entry points of the
CP/M operating system, i.e. ConSt uses CONST, ConIn uses CONIN, ConOut
uses CONOUT, LstOut uses LIST, AuxOut uses PUNCH, AuxIn uses READER,
UsrOut uses CONOUT, and UsrIn uses CONIN. This, however, may be chan-
ged by the programmer by assigning the address of a self-defined driver pro-
cedure or a driver function to one of the following standard variables:

 Variable Contains the address of the

 ConStPtr ConSt function
 ConInPtr ConIn function
 ConOutPtr ConOut procedure
 LstOutPtr LstOut procedure
 AuxOutPtr AuxOut procedure
 AuxInPtr AuxIn function
 UsrOutPtr UsrOut procedure
 UsrInPtr UsrIn function

A user defined driver procedure or driver function must match the definitions
given above, i.e. a ConSt driver must be a Boolean function, a ConIn driver
must be a Char function, etc.

CP/M-80 155

A.14 Interrupt Handling

A.14 Interrupt Handling

The TURBO Pascal run time package and the code generated by the compiler
are both fully interruptible. Interrupt service routines must preserve all regi-
sters used.

If required, interrupt service procedures may be written in Pascal. Such proce-
dures should always be compiled with the A compiler directive active ({$A+}),
they must not have parameters, and they must themselves ensure that all re-
gisters used are preserved. This is done by placing an inline statement with
the necessary PUSH instructions at the very beginning of the procedure, and
another inline statement with the corresponding POP instructions at the very
end of the procedure. The last instruction of the ending inline statement
should be an EI instruction ($FB) to enable further interrupts. If daisy chained
interrupts are used, the inline statement may also specify a RETI instruction (
$ED,$4D), which will override the RET instruction generated by the compiler.

The general rules for register usage are that integer operations use only the
AF, BC, DE, and HL registers, other operations may use IX and IY, and real
operations use the alternate registers.

An interrupt service procedure should not employ any I/O operations using
the standard procedures and functions of TURBO Pascal, as these routines
are not re-entrant. Also note that BDOS calls (and in some instances BIOS
calls, depending on the specific CP/M implementation) should not be per-
formed from interrupt handlers, as these routines are not re-entrant.

The programmer may disable and enable interrupts throughout a program us-
ing DI and EI instructions generated by inline statements.

If mode 0 (IM 0) or mode 1 (IM 1) interrupts are employed, it is the responsi-
bility of the programmer to initialize the restart locations in the base page
(note that RST 0 cannot be used, as CP/M uses locations 0 through 7). If
mode 2 (IM 2) interrupts are employed, the programmer should generate an
initialized jump table (an array of integers) at an absolute address, and initia-
lize the I register through a inline statement at the beginning of the program.

156 TURBO Pascal Language Minual

Internal Data Formats A.15

A.15 Internal Data Formats

In the following descriptions, the symbol @ denotes the address of the first
byte occupied by a variable of the given type. The standard function Addr may
be used to obtain this value for any variable.

A.15.1 Basic Data Types

The basic data types may be grouped into structures (arrays, records, and disk
files), but this structuring will not affect their internal formats.

A.15.1.1 Scalars

The following scalars are all stored in a single byte: Integer subranges with
both bounds in the range 0..255, Booleans, Chars, and declared scalars with
less than 256 possible values. This byte contains the ordinal value of the va-
riable.

The following scalars are all stored in two bytes: Integers, Integer subranges
with one or both bounds not within the range 0..255, and declared scalars
with more than 256 possible values. These bytes contain a 2's complement
16-bit value with the least significant byte stored first.

A.15.7.2 Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa and
an 8-bit 2's exponent. The exponent is stored in the first byte and the man-
tissa in the next five bytes with the least significant byte first:

 @ Exponent
 @+1 LSB of mantissa
 .
 .
 @+5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an exponent
of $84 indicates that the value of the mantissa is to be multiplied by 2^($84-
$80) = 2^4 = 16. If the exponent is zero, the floating point value is conside-
red to be zero.

CP/M-80 157

A.15.1.2 Reals

The value of the mantissa is obtained by dividing the 40-bit unsigned integer
by 2^40. The mantissa is always normalized, i.e. the most significant bit (bit 7
of the fifth byte) should be interpreted as a 1. The sign of the mantissa is sto-
red in this bit, a 1 indicating that the number is negative, and a 0 indicating
that the number is positive.

A.15.1.3 Strings

A string occupies the number of bytes corresponding to one plus the maxi-
mum length of the string. The first byte contains the current length of the str-
ing. The following bytes contain the actual characters, with the first character
stored at the lowest address. In the table shown below, L denotes the current
length of the string, and Max denotes the maximum length:

 @ Current length (L)
 @+1 First character
 @+2 Second character
 .
 .
 @+L Last character
 @+L+1 Unused
 .
 .
 @+Max Unused

A.15.1.4 Sets

An element in a set occupies one bit, and as the maximum number of ele-
ments in a set is 256, a set variable will never occupy more than 32 bytes
(256/8).

If a set contains less than 256 elements, some of the bits are bound to be
zero at all times and need therefore not be stored. In terms of memory effi-
ciency, the best way to store a set variable of a given type would then be to
"cut off" all insignificant bits, and rotate the remaining bits so that the first
element of the set would occupy the first bit of the first byte. Such rotate ope-
rations, however, are quite slow, and TURBO therefore employs a compro-
mise: Only bytes which are statically zero (i.e. bytes of which no bits are used)
are not stored. This method of compression is very fast and in most cases as
memory efficient as the rotation method.

158 TURBO Pascal Language Manual

Sets A.15.1.4

The number of bytes occupied by a set variable is calculated as (Max div 8) -
(Min div 8) + 1, where Max and Min are the upper and lower bounds of the
base type of that set. The memory address of a specific element E is:

 MemAddress = @ + (E div 8) - (Min div 8)

and the bit address within the byte at MemAddress is:

 BitAddress = E mod 8

where E denotes the ordinal value of the element.

A.15.1.5 File Interface Blocks

Each file variable in a program has an associated file interface block (FIB). A
FIB occupies 176 bytes of memory and is divided into two sections: The con-
trol section (the first 48 bytes), and the sector buffer (the last 128 bytes). The
control section contains various information on the disk file or device cur-
rently assigned to the file. The sector buffer is used to buffer input and output
from and to the disk file.

The table below shows the format of a FIB:

 @ Flags byte
 @+1 File type
 @+2 Character buffer
 @+3 Sector buffer pointer
 @+4 Number of records (LSB)
 @+5 Number of records (MSB)
 @+6 Record length in bytes (LSB)
 @+7 Record length in bytes (MSB)
 @+8 Current record number (LSB)
 @+9 Current record number (MSB)
 @+10 Unused (reserved)
 @+11 Unused (reserved)
 @+12 First byte of CP/M FCB
 .
 .
 @+47 Last byte of CP/M FCB
 @+48 First byte of sector buffer
 .
 .
 @+175 Last byte of sector buffer

CP/M-80 159

A.15.1.5 File Interface Blocks

The flags byte at @ contains four one bit flags which indicate the current sta-
tus of the file:

 bit 0 Input flag. High if input is allowed.
 bit 1 Output flag. High if output is allowed.
 bit 2 Write semaphore. High if data has been written to the
 sector buffer.
 bit 3 Read semaphore. High if the contents of the sector buffer
 is undefined.

The file type field at @+1 specifies the type of device currently assigned to the
file variable. The following values can occur:

 0 The console device (CON:)
 1 The terminal device (TRM:)
 2 The keyboard device (KBD:)
 3 The list device (LST:)
 4 The auxiliary device (AUX:)
 5 The user device (USR:)
 6 A disk file

When a file is assigned to a logical device, only the first three bytes of the FIB
are of significance.

The sector buffer pointer at @+3 contains an offset from the first byte of the
sector buffer. The following three fields are used only by random access files
(defined files) and untyped files. Each field consists of two bytes in byte rever-
sed format. Bytes @+10 and @+11 are currently unused, but reserved for fu-
ture expansion. Bytes @+12 through @+47 contain a CP/M file control block
(FCB). The last block of the FIB is the sector buffer used for buffering input
and output from and to disk files.

The FIB format described above applies to all defined files and textfiles. The
FIB of an untyped file has no sector buffer, as data is transferred directly be-
tween a variable and the disk file. Thus, the length of the FIB of an untyped
file is only 48 bytes.

A.15.1.6 Pointers

A pointer consists of two bytes containing a 16-bit memory address, and it is
stored in memory using byte reversed format, i.e. the least significant byte is
stored first. The value nil corresponds to a zero word.

160 TURBO Pascal Language Manual

Data Structures A.15.2

A.15.2 Data Structures

Data structures are built from the basic data types using various structuring
methods. Three different structuring methods exist: arrays, records, and disk
files. The structuring of data does not in any way affect the internal formats of
the basic data types.

A.15.2.1 Arrays

The components with the lowest index values are stored at the lowest me-
mory address. A multi-dimensional array is stored with the rightmost dimen-
sion increasing first, e.g. given the array

 Board: array[l..8,1..8] of Square

you have the following memory layout of its components:

 lowest address: Board[1,1]
 Board[1,2]
 .
 .
 Board[1,8]
 Board[2,1]
 Board[2,2]
 .
 .
 .
 .
 highest address: Board[8,8]

A.15.2.2 Records

The first field of a record is stored at the lowest memory address. If the record
contains no variant parts, the length is given by the sum of the lengths of the
individual fields. If a record contains a variant, the total number of bytes occu-
pied by the record is given by the length of the fixed part plus the length of
largest of its variant parts. Each variant starts at the same memory address.

CP/M-80 161

A.15.2.3 Disk Files

A.15.2.3 Disk Files

Disk files are different from other data structures in that data is not stored in
internal memory but in a file on an external device. A disk file is controlled th-
rough a file interface block (FIB) as described in section A.15.1.5. In general
there are two different types of disk files: random access files and text files.

A.15.2.3.1 Random Access Files

A random access file consists of a sequence of records, all of the same length
and same internal format. To optimize file storage capacity, the records of a
file are totally contiguous. The first four bytes of the first sector of a file con-
tains the number of records in the file and the length of each record in bytes.
The first record of the file is stored starting at the fourth byte.

 sector 0, byte 0: Number of records (LSB)
 sector 0, byte 1: Number of records (MSB)
 sector 0, byte 2: Record length (LSB)
 sector 0, byte 3: Record length (MSB)

A.15.2.3.2 Text Files

The basic components of a text file are characters, but a text file is subdivided
into lines. Each line consists of any number of characters ended by a CR/LF
sequence (ASCII $0D/$0A). The file is terminated by a Ctrl-Z (ASCII $1A).

A.15.3 Parameters

Parameters are transferred to procedures and functions via the Z-80 stack.
Normally, this is of no interest to the programmer, as the machine code gene-
rated by TURBO Pascal will automatically PUSH parameters onto the stack
before a call, and POP them at the beginning of the subprogram. However, if
the programmer wishes to use external subprograms, these must POP the
parameters from the stack themselves.

162 TURBO Pascal Language Manual

Parameters A.15.3

On entry to an external subroutine, the top of the stack always contains the
return address (a word). The parameters, if any, are located below the return
address, i.e. at higher addresses on the stack. Therefore, to access the para-
meters, the subroutine must first POP off the return address, then all the pa-
rameters, and finally it must restore the return address by PUSHing it back
onto the stack.

A.15.3.1 Variable Parameters

With a variable (VAR) parameter, a word is transferred on the stack giving the
absolute memory address of the first byte occupied by the actual parameter.

A.15.3.2 Value Parameters

With value parameters, the data transferred on the stack depends upon the
type of the parameter as described in the following sections.

A.15.3.2.1 Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except Reals)
are transferred on the stack as a word. If the variable occupies only one byte
when it is stored, the most significant byte of the parameter is zero. Normally,
a word is POPped off the stack using an instruction like POP HL.

A.15.3.2.2 Reals

A real is transferred on the stack using six bytes. If these bytes are POPped
using the instruction sequence:

 POP HL
 POP DE
 POP BC

then L will contain the exponent, H the fifth (least significant) byte of the
mantissa , E the fourth byte, D the third byte, C the second byte, and B the
first (most significant) byte.

CP/M-80 163

A.15.3.2.3 Strings

A.15.3.2.3 Strings

When a string is at the top of the stack, the byte pointed to by SP contains the
length of the string. The bytes at addresses SP+1 through SP+n (where n is
the length of the string) contain the string with the first character stored at the
lowest address. The following machine code instructions may be used to POP
the string at the top of the stack and store it in StrBuf.

 LD DE,StrBuf
 LD HL,0
 LD B,H
 ADD HL,SP
 LD C,(HL)
 INC BC
 LDIR
 LD SP,HL

A.15.3.2.4 Sets

A set always occupies 32 bytes on the stack (set compression only applies to
the loading and storing of sets). The following machine code instructions may
be used to POP the set at the top of the stack and store it in SetBuf.

 LD DE,SetBuf
 LD HL,0
 ADD HL,SP
 LD BC,32
 LDIR
 LD SP,HL

This will store the least significant byte of the set at the lowest address in
SetBuf.

A.15.3.2.5 Pointers

A pointer value is transferred on the stack as a word containing the memory
address of a dynamic variable. The value NIL corresponds to a zero word.

164 TURBO Pascal Language Manual

Arrays and Records A.15.3.2.6

A.15.3.2.6 Arrays and Records

Even when used as value parameters, Array and Record parameters are not
actually PUSHed onto the stack. Instead, a word containing the address of
the first byte of the parameter is transferred. It is then the responsibility of the
subroutine to POP this word, and use it as the source address in a block copy
operation.

A.15.4 Function Results

User written external functions must return their results exactly as specified
in the following:

Values of scalar types, except Reals, must be returned in the HL register pair.
If the type of the result is expressed in one byte, then it must be returned in L
and H must by zero.

Reals must be returned in the BC, DE, and HL register pairs. B, C, D, E, and H
must contain the mantissa (most significant byte in B), and L must contain the
exponent.

Strings and sets must be returned on the top of the stack in the formats
described in sections A.15.3.2.3 and A.15.3.2.4.

Pointer values must be returned in the HL register pair.

CP/M-80 165

A.16 Memory Management

A.16 Memory Management

A.16.1 Memory Maps

The following diagrams illustrate the contents of memory at different stages
of working with the TURBO system. Solid lines indicate fixed boundaries (i.e.
determined by amount of memory, size of your CP/M, version of TURBO,
etc.), whereas dotted lines indicate boundaries which are determined at run-
time (e.g. by the size of the source text, and by possible user manipulation of
various pointers, etc.). The sizes of the segments in the diagrams do not ne-
cessarily reflect the amounts of memory actually consumed.

A.16.1.1 Compilation in Memory

During compilation of a program in memory (Memory-mode on compiler Op-
tions menu, see section A.1), the memory is mapped as follows:

+-----------------------------+------- 0000
+-----------------------------+------- CP/M and run-time workspace
| | Pascal Library
+-----------------------------+-------
| |
| | Turbo interface, editor, and compiler
+-----------------------------+-------
|.............................|....... Error messages, optional
| |
| | Source text
| |
+.............................+...|... Object code growing upward
| | v
| |
| | ^
+-----------------------------+---|--- Symbol table growing downward
| |
| | ^
+-----------------------------+---|--- CPU stack growing downward
| |
| | CP/M
+-----------------------------+------- HighMem

 Figure A-5: Memory map during compilation in memory

166 TURBO Pascal Language Manual

Compilation in Memory A.16.1.1

If the error message file is not loaded when starting TURBO, the source text
starts that much lower in memory. When the compiler is invoked, it generates
object code working upwards from the end of the source text. The CPU stack
works downwards from the logical top of memory, and the compiler's symbol
table works downwards from an address 1K ($400 bytes) below the logical
top of memory.

A.16.1.2 Compilation To Disk

During compilation to a .COM or .CHN file (Com-mode or cHn-mode on
compiler Options menu, see section A.1), the memory looks much as during
compilation in memory (see preceding section) except that generated object
code does not reside in memory but is written to a disk file. Also, the code
starts at a lower address (right after the Pascal library instead of after the
source text). Compilation of much larger programs is thus possible in this
mode.

+-----------------------------+------- 0000
+-----------------------------+------- CP/M and run-time workspace
| | Pascal Library
+-----------------------------+-------
| |
| | Turbo interface, editor, and compiler
+-----------------------------+-------
|.............................|....... Error messages, optional
| |
| | Source text
| |
| |
| |
| |
| | ^
+-----------------------------+---|--- Symbol table growing downward
| |
| | ^
+-----------------------------+---|--- CPU stack growing downward
| |
| | CP/M
+-----------------------------+------- HighMem

 Figure A-6: Memory map during compilation to a file

CP/M-80 167

A.16.1.3 Execution in Memory

A.l6.1.3 Execution in Memory

When a program is executed in direct - or memory - mode (i.e. the Memory-
mode on compiler Options menu is selected, see section A.1), the memory is
mapped as follows:

+-----------------------------+------- 0000
+-----------------------------+------- CP/M and run-time workspace
| | Pascal Library
+-----------------------------+-------
| |
| | Turbo interface, editor, and compiler
+-----------------------------+-------
|.............................|....... Error messages, optional
| |
| | Source text
|.............................|.......
| | Object code
| |
|.............................|...|... Default initial value of HeapPtr
| | v Heap growing upward
| |
| | ^ Recursion stack growing downward
|.............................|...|... Default initial state of RecurPtr
| |
| | CPU stack growing downward
| | ^
|.............................|...|... Default initial state of StackPtr
| |
+-----------------------------+------- Program variables
| | CP/M
+-----------------------------+------- HighMem

 Figure A-7: Memory map during execution in direct mode

When a program is compiled, the end of the object code is known. The heap
pointer HeapPtr is set to this value by default, and the heap grows from here
and upwards in memory towards the recursion stack. The maximum memory
size is BDOS minus one (indicated on the compiler Options menu). Program
variables are stored from this address and downwards. The end of the vari-
ables is the 'top of free memory' which is the initial value of the CPU stack
pointer StackPtr. The CPU stack grows downwards from here towards the
position of the recursion stack pointer RecurPtr, $400 bytes lower than
StackPtr. The recursion stack grows from here downward towards the heap.

168 TURBO Pascal Language Manual

Execution of A Program File A.16.1.4

A.16.1.4 Execution of A Program File

When a program file is executed (either by the Run command with the Com-
file mode on the compiler Options menu selected, by an eXecute command,
or directly from CP/M), the memory is mapped as follows:

+-----------------------------+------- 0000
+-----------------------------+------- CP/M and run-time workspace
| | Pascal Library
+-----------------------------+------- Default program start address
| |
| |
| |
| | Object code
| |
|.............................|...|... Default initial value of HeapPtr
| | v Heap growing upward
| |
| | ^ Recursion stack growing downward
|.............................|...|... Default initial state of RecurPtr
| |
| | CPU stack growing downward
| | ^
|.............................|...|... Default initial state of StackPtr
| |
| | Program variables
|.............................|....... Default end address
| Loader |
+-----------------------------+------- Maximum memory size
| | CP/M
+-----------------------------+------- HighMem

 Figure A-8: Memory map during execution of a program file

This map resembles the previous, except for the absence of the TURBO inter-
face, editor, and compiler (and possible error messages) and of the source
text. The default program start address (shown on the compiler Options
menu) is the first free byte after the Pascal runtime library. This value may be
manipulated with the Start address command of the compiler Options menu,
e.g. to create space for absolute variables and/or external procedures bet-
ween the library and the code. The maximum memory size is BDOS minus
one, and the default value is determined by the BDOS location on the compu-
ter in use.

CP/M-80 169

A.16.1.4 Execution of A Program File

If programs are to be translated for other systems, care should be taken to
avoid collision with the BDOS. The maximum memory may be manipulated
with the End address command of the compiler Options menu. Notice that
the default end address setting is approx. 700 to 1000 bytes lower than max-
imum memory. This is to allow space for the loader which resides just below
BDOS when COM files are Run or eXecuted from the TURBO system. This
loader restores the TURBO editor, compiler, and possible error messages
when the program finishes and thus returns control to the TURBO system.

A.16.2 The Heap and The Stacks

As indicated by the memory maps in previous sections, three stack-like struc-
tures are maintained during execution of a program: The heap, the CPU stack,
and the recursion stack.

The heap is used to store dynamic variables, and is controlled with the stan-
dard procedures New, Mark, and Release. At the beginning of a program, the
heap pointer HeapPtr is set to the address of the bottom of free memory, i.e
the first free byte after the object code.

The CPU stack is used to store intermediate results during evaluation of ex-
pressions and to transfer parameters to procedures and functions. An active
for statement also uses the CPU stack, and occupies one word. At the begin-
ning of a program, the CPU stack pointer StackPtr is set to the address of the
top of free memory.

The recursion stack is used only by recursive procedures and functions, i.e.
procedures and functions compiled with the A compiler directive passive
({$A-}). On entry to a recursive subprogram it copies its workspace onto the
recursion stack, and on exit the entire workspace is restored to its original
state. The default initial value of RecurPtr at the beginning of a program, is 1K
($400) bytes below the CPU stack pointer.

Because of this technique, variables local to a subprogram must not be used
as var parameters in recursive calls.

The pre-defined variables:

 HeapPtr: The heap pointer,
 RecurPtr: The recursion stack pointer, and
 StackPtr: The CPU stack pointer

allow the programmer to control the position of the heap and the stacks.

170 TURBO Pascal Language Manual

The Heap and The Stacks A.16.2

The type of these variables is Integer. Notice that HeapPtr and RecurPtr may
be used in the same context as any other Integer variable, whereas StackPtr
may only be used in assignments and expressions.

When these variables are manipulated, always make sure that they point to
addresses within free memory, and that:

 HeapPtr < RecurPtr < StackPtr

Failure to adhere to these rules will cause unpredictable, perhaps fatal, re-
sults.

Needless to say, assignments to the heap and stack pointers must never oc-
cur once the stacks or the heap are in use.

On each call to the procedure New and on entering a recursive procedure or
function, the system checks for collision between the heap and the recursion
stack, i.e. checks if HeapPtr is less than RecurPtr. If not, a collision has occur-
red, which results in an execution error.

Note that no checks are made at any time to insure that the CPU stack does
not overflow into the bottom of the recursion stack. For this to happen, a re-
cursive subroutine must call itself some 300-400 times, which must be con-
sidered a rare situation. If, however, a program requires such nesting, the fol-
lowing statement executed at the beginning of the program block will move
the recursion stack pointer downwards to create a larger CPU stack:

 RecurPtr := StackPtr -2*MaxDepth -512;

where MaxDepth is the maximum required depth of calls to the recursive
subprogram(s). The extra approx. 512 bytes are needed as a margin to make
room for parameter transfers and intermediate results during the evaluation of
expressions.

CP/M-80 171

A.16.2 The Heap and The Stacks

 Notes:

172 TURBO Pascal Language Manual

MS-DOS/PC-DOS and CP/M-86 B

 B. MS-DOS/PC-DOS and CP/M-86

This appendix describes features of TURBO pascal specific to the various 16-
bit implementations. The appendix has three sub-sections:

Common features which deals with information common to the MS-
DOS/PC-DOS and the CP/M-86 implementations.

The MS-DOS/PC-DOS implementation which deals with information
specific to the MS-DOS implementation.

The CP/M-86 implementation which deals with information specific to the
CP/M-86 implementation.

B.1 Common features

This section presents two kinds of information:

1) Things you must know to make efficient use of TURBO Pascal. These are
described in section B.1.1.

2) The remaining sections describe things which are only of interest to expe-
rienced programmers, e.g. calling machine language routines, technical
aspects of the compiler, etc.

B.1.1 Compiler Options

The O command selects the following menu from which you may view and
change some default values of the compiler. It also provides a helpful function
to find runtime errors in programs compiled into object code files.

+--+
| |
| compile -> Memory |
| Com-file |
| cHn-file |
| |
| Find run-time error Quit |
| |
+--+
 Figure B-1: Options Menu

MS-DOS/PC-DOS and CP/M-86 173

B.1.1 Compiler Options

The only difference between the two implementations is that the command
Com-file is called Cmd-file in the CP/M-86 implementation.

B.1.1.1 Memory / Com file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where to put
the code which results from the compilation. Memory is the default mode.
When active, code is produced in memory and resides there ready to be acti-
vated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this line. The
compiler writes code to a file with the same name as the Work file (or Main
file, if specified) and the file type .COM (in CP/M-86 the file type is .CMD).
This file contains the program code and Pascal runtime library, and may be
activated by typing its name at the console.

cHain-file is selected by pressing H. The arrow moves to point to this line.
The compiler writes code to a file with the same name as the Work file (or
Main file, if specified) and the file type .CHN. This file contains the program
code but no Pascal library and must be activated from another TURBO Pascal
program with the Chain procedure (see section B.1.9).

When the Com or cHn mode is selected, four additional lines will appear on
the screen:

+--+
| |
| minimum cOde segment size: XXXX paragraphs (max. YYYY) |
| minimum Data segment size: XXXX paragraphs (max. YYYY) |
| mInimum free dynamic memory: XXXX paragraphs |
| mAximum free dynamic memory: XXXX paragraphs |
| |
+--+
 Figure B-2: Memory Usage Menu

The use of these commands are described in the following sections.

174 TURBO Pascal Language Manual

Minimum Code Segment Size B.1.1.2

B.1.1.2 Minimum Code Segment Size

The O-command is used to set the minimum size of the code segment for a
.COM using Chain or Execute. As discussed in section B.1.9, Chain and Exe-
cute do not change the base addresses of the code, data, and stack seg-
ments, and a 'root' program using Chain or Execute must therefore allocate
segments of sufficient size to accommodate the largest segments in any
Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value of the
Minimum Code Segment Size to at least the same value as the largest code
segment size of the programs to be chained/executed from that root. The re-
quired values are obtained from the status printout terminating any compila-
tion. The values are in hexadecimal and specify number of paragraphs, a para-
graph being 16 bytes.

B.1.1.3 Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment for a
.COM using Chain or Execute. As discussed above, a 'root' program using
these commands must allocate segments of sufficient size to accommodate
the largest data of any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value of the
Minimum Data Segment Size to at least the same value as the largest data
segment size of the programs to be chained/executed from that root. The re-
quired values are obtained from the status printout terminating any compila-
tion. The values are in hexadecimal and specify number of paragraphs, a para-
graph being 16 bytes.

B.1.1.4 Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and heap.
The value is in hexadecimal and specifies a number of paragraphs, a para-
graph being 16 bytes.

MS-DOS/PC-DOS and CP/M-86 175

B.1.1.5 Maximum Free Dynamic Memory

B.1.1.5 Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and heap.
It must be used in programs which operate in a multi-user environment like
Concurrent CP/M-86 to assure that the program does not allocate the entire
free memory. The value is in hexadecimal and specifies a number of para-
graphs, a paragraph being 16 bytes.

B.1.1.6 Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs, the
editor is invoked, and the error is automatically pointed out. This, of course, is
not possible if the program is in a .COM/.CMD file or an .CHN file. Run time
errors then print out the error code and the value of the program counter at
the time of the error, e.g.:

+--+
| |
| Run-time error 01, PC=1B56 |
| Program aborted |
| |
+--+
 Figure B-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the F com-
mand. When prompted for the address, enter the address given by the error
message:

+--+
| |
| Enter PC: 1B56 |
| |
+--+
 Figure B-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if the er-
ror had occurred while running the program in memory.

176 TURBO Pascal Language Manual

Standard Identifiers B.1.2

B.1.2 Standard Identifiers

The following standard identifiers are unique to the 16-bit implementation:

 CSeg Intr Ofs Seg
 DSeg MemW PortW SSeg

B.1.3 Absolute Variables

Variables may be declared to reside at specific memory addresses, and are
then called absolute. This is done by adding to the variable declaration the
reserved word absolute followed by two Integer constants specifying a seg-
ment and an offset at which the variable is to be located:

 var
 Abc: Integer absolute $0000:$00EE;
 Def: Integer absolute $0000:$00F0;

The first constant specifies the segment base address, and the second cons-
tant specifies the offset within that segment. The standard identifiers CSeg
and DSeg may be used to place variables at absolute addresses within the
code segment (CSeg) or the data segment (DSeg):

 Special: array[1..CodeSize] absolute CSeg:$05F3;

Absolute may also be used to declare a variable "on top" of another variab-
le, i.e. that a variable should start at the same address as another variable.
When absolute is followed by the variable (or parameter) identifier, the new
variable will start at the address of that variable (or parameter).

Example:
 var
 Str: string[32];
 StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the same ad-
dress as the variable Str, and as the first byte of a string variable contains the
length of the string, StrLen will contain the length of Str. Notice that an abso-
lute variable declaration may only specify one identifier.

Further details on space allocation for variables are found in section B.1.12.

MS-DOS/PC-DOS and CP/M-86 177

B.1.4 Absolute Address Functions

B.1.4 Absolute Address Functions

The following functions are provided for obtaining information about program
variable addresses and system pointers.

B.1.4.1 Addr

Syntax: Addr(Name)

Returns the address in memory of the first byte of the variable with the identi-
fier Name. If Name is an array, it may be subscripted, and if Name is a record,
specific fields may be selected. The value returned is a 32 bit pointer consist-
ing of a segment address and an offset.

B.1.4.2 Ofs

Syntax: Ofs(Name)

Returns the offset in the segment of memory occupied by the first byte of the
variable, procedure or function with the identifier Name. If Name is an array, it
may be subscripted, and if Name is a record, specific fields may be selected.
The value returned is an Integer.

B.1.4.3 Seg

Syntax: Seg(Name)

Returns the address of the segment containing the first byte of the variable,
procedure or function with the identifier Name. If Name is an array, it may be
subscripted, and if Name is a record, specific fields may be selected. The value
returned is an Integer.

B.1.4.4 Cseg

Syntax: Cseg

Returns the base address of the Code segment. The value returned is an Inte-
ger.

178 TURBO Pascal Language Manual

Dseg B.1.4.5

B.1.4.5 Dseg

Syntax: Dseg

Returns the base address of the Data segment. The value returned is an Inte-
ger.

B.1.4.6 Sseg

Syntax: Sseg

Returns the base address of the Stack segment. The value returned is an Inte-
ger.

B.1.5 Predefined Arrays

TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and data
ports.

B.1.5.1 Mem Array

The predefined arrays Mem and MemW are used to access memory. Each
component of the array Mem is a byte, and each component of the array
MemW is a word (two bytes, LSB first). The index must be an address speci-
fied as the segment base address and an offset separated by a colon and both
of type Integer.

The following statement assigns the value of the byte located in segment
0000 at offset $0081 to the variable Value

 Value:=Mem[0000:$0081];

While the following statement:

 MemW[Seg(Var):Ofs(Var)]:=Value;

places the value of the Integer variable Value in the memory location occu-
pled by the two first bytes of the variable Var.

MS-DOS/PC-DOS and CP/M-86 179

B.1.5.2 Port Array

B.1.5.2 Port Array

The Port and PortW array are used to access the data ports of the 8086/88
CPU. Each element of the array represents a data port, with the index corre-
sponding to port numbers. As data ports are selected by 16-bit addresses the
index type is Integer. When a value is assigned to a component of Port or
PortW it is output to the port specified. When a component of Port is referen-
ced in an expression, its value is input from the port specified. The compo-
nents of the Port array are of type Byte and the components of PortW are of
type Integer.

Example:
 Port[56]:=10;

The use of the Port array is restricted to assignment and reference in ex-
pressions only, i.e. components of Port and PortW cannot be used as variab-
le parameters to procedures and functions. Furthermore, operations referring
to the entire Port array (reference without index) are not allowed.

B.1.6 With Statements

With statements may be nested to a maximum of 9 levels.

B.1.7 Pointer Related Items

B.1.7.1 MemAvail

The standard function MemAvail is available to determine the available space
on the heap at any given time. The result is an Integer specifying the number
of available paragraphs on the heap. (a paragraph is 16 bytes).

B.1.7.2 Pointer Values

In very special circumstances it can be of interest to assign a specific value to
a pointer variable without using another pointer variable or it can be of inte-
rest to obtain the actual value of a pointer variable.

180 TURBO Pascal Language Manual

Assigning a Value to a Pointer B.1.7.2.1

B.1.7.2.1 Assigning a Value to a Pointer

The standard function Ptr can be used to assign specific values to a pointer
variable. The function returns a 32 bit pointer consisting of a segment address
and an offset.

Example:
 Pointer:=Ptr(Cseg,$80);

B.1.7.2.2 Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard function Ord
can therefore not be used to obtain its value. Instead the functions Ofs and
Seg must be used.

The following statement obtains the value of the pointer P (which is a seg-
ment address and an offset):

 SegmentPart:=seg(P^);
 OffsetPart:=Ofs(P^);

B.1.8 External Subprograms

The reserved word external is used to declare external procedures and func-
tions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant specifying
the name of a file in which executable machine code for the external proce-
dure or function must reside.

During compilation of a program containing external functions or procedures
the associated files are loaded and placed in the object code. Since it is im-
possible to know beforehand exactly where in the object code the external
code will be placed this code must be relocatable, and no references must be
made to the data segment. Furthermore the external code must save the regi-
sters BP, CS, DS and SS and restore these before executing the RET instruc-
tion.

An external subprogram has no block, i.e. no declaration part and no state-
ment part. Only the subprogram heading is specified, immediately followed by
the reserved word external and a filename specifying where to find the exe-
cutable code for the subprogram.

MS-DOS/PC-DOS and CP/M-86 181

B.1.8 External Subprograms

The type of the filename is .COM in the MS-DOS version and .CMD in the
CP/M-86 version. Only the code segment of a .CMD file is loaded.

Example:
 procedure DiskReset; external 'DSKRESET';
 function IOstatus: boolean; external 'IOSTAT';

Parameters may be passed to external subprograms, and the syntax is exactly
the same as that of calls to ordinary procedures and functions:

 procedure Plot(X,Y: Integer); external 'PLOT';
 procedure QuickSort(var List: PartNo); external 'QS';

External subprograms and parameter passing is discussed further in section
B.1.12.3.

B.1.9 Chain and Execute

TURBO Pascal provides two procedures Chain and Execute which allow you
to activate other TURBO programs from a TURBO program. The syntax of the
procedure calls are:

 Chain(File)
 Execute(File)

where File is a file variable of any type, previously assigned to a disk file with
the standard procedure Assign. If the file exists, it is loaded into memory and
executed.

The Chain procedure is used only to activate special TURBO Pascal .CHN fi-
les, i.e. files compiled with the cHn-file option selected on the Options menu
(see section B.1.1.1). Such a file contains only program code; no Pascal li-
brary, it uses the Pascal library already present in memory.

The Execute procedure works exactly as if the program had been activated
from the operating system (with the limitation that parameters can not be
passed from the command line).

182 TURBO Pascal Language Manual

Chain and Execute B.1.9

Chaining and eXecuting TURBO programs does not alter the memory alloca-
tion state. The base addresses and sizes of the code, data and stack segments
are not changed. It is therefore imperative that the first program which exe-
cutes a Chain statement allocates enough memory for the code, data, and
stack segments to accommodate largest .CHN program. This is done by using
the Options menu to change the minimum code, data and free memory sizes
(see section B.1.1).

If the disk file does not exist, an I/O error occurs. This error is treated as de-
scribed in section 14.8. When the I compiler directive is passive ({$I-}), pro-
gram execution continues with the statement following the failed Chain or Ex-
ecute statement, and the IOresult function must be called prior to further I/O.

Data can be transferred from the current program to the chained program eit-
her by shared global variables or by absolute address variables.

To insure overlapping, shared global variables should be declared as the very
first variables in both programs, and they must be listed in the same order in
both declarations. Furthermore, both programs must be compiled to the same
size of code and data segments (see sections B.1.1.2 and B.1.1.3). When these
conditions are satisfied, the variables will be placed at the same address in
memory by both programs, and as TURBO Pascal does not automatically ini-
tialize its variables, they may be shared.

Example:
Program MAIN.COM:

 program Main;
 var
 Txt: string[8O];
 Cntprg: file;

 begin
 Write('Enter any text: '); Readln(Txt);
 Assign(Cntprg,'ChrCount.chn');
 Chain(Cntprg);
 end.

MS-DOS/PC-DOS and CP/M-86 183

B.1.9 Chain and Execute

Program CHRCOUNT.CHN:

 program ChrCount;
 var
 Txt: string[80];
 NoOfChar,
 NoOfUpc,
 I: Integer;

 begin
 NoOfUpc := 0;
 NoOfChar := Length(Txt);
 for I := 1 to length(Txt) do
 if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);
 Write('No of characters in entry: ',NoOfChar);
 Writeln('. No of upper case characters: ', NoOfUpc,'.');
 end.

Note that neither Chain nor Execute can be used in direct mode, i.e. from a
program run with the compiler options switch in position Memory (section
B.1.1.1).

B.1.10 In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way of in-
serting machine code instructions directly into the program text. An inline sta-
tement consists of the reserved word inline followed by one or more con-
stants, variable identifiers, or location counter references, separated by slash-
es and enclosed in parentheses.

The constants may be either literal constants or constant identifiers, and they
must be of type Integer. Literals generate one byte of code if within the range
0..255 ($00..$FF), otherwise two bytes in the standard byte reversed format.
Constant identifiers always generate two bytes of code.

A variable identifier generates two bytes of code (in byte reversed format)
containing the offset of the variable within its base segment. Global, local and
typed constants occupy different segments as follows:

Global variables reside in the data segment and the offset generated is re-
lative to the DS register.

184 TURBO Pascal Language Manual

In-line Machine Code B.1.10

Local variables reside in the stack segment and the offset generated is rela-
tive to the BP register.

Typed constants reside in the code segment and the offset generated is re-
lative to the CS register.

When an inline statement terminates, the registers BP, SP, DS, and SS must
be restored to their original values before the inline statement.

A location counter reference consists of an asterisk, optionally followed by an
offset consisting of a plus or a minus sign and an Integer constant. An aste-
risk alone generates two bytes of code (in byte reversed format) containing
the current location counter value. If the asterisk is followed by an offset, it is
added or subtracted before coding the address.

The following example of an inline statement generates machine code that
will convert all characters in its string argument to upper case.

 procedure UpperCase(var Strg: Str); {Str is type String[255]}
 begin
 inline
 ($C4/$BE/Strg/ { LES DI,Strg[BP] }
 $26/$8A/$0D/ { MOV CL,ES:[DI] }
 $FE/$C1/ { INC CL }
 $FE/$C9/ { L1: DEC CL }
 $74/$13/ { JZ L2 }
 $47/ { INC DI }
 $26/$80/$3D/$61/ { CMP ES:BYTE PTR [DI],'a'}
 $72/$F5/ { JB L1 }
 $26/$80/$3D/$7A/ { CMP ES:BYTE PTR [DI],'z'}
 $77/$EF/ { JA L1 }
 $26/$80/$2D/$20/ { SUB ES:BYTE PTR [DI],20H}
 $EB/$E9); { JMP SHORT L1 }
 { L2: }
 end;

Inline statements may be freely mixed with other statements throughout the
statement part of a block, and inline statements may use all CPU registers.
Note, however, that the contents of the registers BP, SP DS, and SS must
be the same on exit as on entry.

MS-DOS/PC-DOS and CP/M-86 185

B.1.11 Interrupt Handling

B.1.11 Interrupt Handling

The TURBO Pascal run time package and the code generated by the compiler
are both fully interruptible. Interrupt service routines must preserve all regi-
sters used.

If required, interrupt service procedures may be written in Pascal. Such proce-
dures must not have parameters, and they must themselves insure that all re-
gisters used are preserved. This is done by placing the following inline state-
ment in the very beginning of the procedure:

 inline ($50/$53/$51/$52/$57/$56/$06/$FB);

and this inline statement at the very end of the procedure:

 inline ($07/$5E/$5F/$5A/$59/$5B/$58/$CF);

The last instruction of the terminating inline statement is an IRET instruction
($CF), which will override the RET instruction generated by the compiler.

An interrupt service procedure should not employ any I/O operations using
the standard procedures and functions of TURBO Pascal, as the BDOS is not
re-entrant. CP/M-86 users should note that BDOS calls should not be per-
formed from interrupt handlers, as these routines are not re-entrant. The pro-
grammer must initialize the interrupt vector used to activate the interrupt ser-
vice routine.

B.1.11.1 Intr procedure

Syntax: Intr(InterruptNo, Result)

This procedure initializes the registers and flags as specified in the parameter
Result which must be of type:

 Result = record
 AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
 end;

It then makes the software interrupt given by the parameter InterruptNo
which must be an Integer constant. When the interrupt service routine returns
control to your program, Result will contain any values returned from the ser-
vice routine.

186 TURBO Pascal Language Manual

Internal Data Formats B.1.12

B.1.12 Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the first byte
occupied by a variable of the given type within its segment. The segment base
address can be determined by using the standard function Seg.

Global and local variables, and typed constants occupy different segments as
follows:

Global variables reside in the data segment and the offset is relative to the
DS register.

Local variables reside in the stack segment and the offset is relative to the
BP register.

Typed constants reside in the code segment and the offset is relative to the
CS register.

All variables are contained within their base segment.

B.1.12.1 Basic Data Types

The basic data types may be grouped into structures (arrays, records, and disk
files), but this structuring will not affect their internal formats.

B.1.12.1.1 Scalars

The following scalars are all stored in a single byte: Integer subranges with
both bounds in the range 0..255, booleans, chars, and declared scalars with
less than 256 possible values. This byte contains the ordinal value of the va-
riable.

The following scalars are all stored in two bytes: Integers, Integer subranges
with one or both bounds not within the range 0..255, and declared scalars
with more than 256 possible values. These bytes contain a 2's complement
16-bit value with the least significant byte stored first.

MS-DOS/PC-DOS and CP/M-86 187

B.1.12.1.2 Reals

B.1.12.1.2 Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa and
an 8-bit 2's exponent. The exponent is stored in the first byte and the man-
tissa in the next five bytes with the least significant byte first:

 @ Exponent
 @ +1 LSB of mantissa
 .
 .
 @ +5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an exponent of
$84 indicates that the value of the mantissa is to be multiplied by 2^($84-
$80) = 2^4 = 16. If the exponent is zero, the floating point value is conside-
red to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned integer
by 2^40. The mantissa is always normalized, i.e. the most significant bit (bit 7
of the fifth byte) should be interpreted as a 1. The sign of the mantissa is sto-
red in this bit, however, a 1 indicating that the number is negative, and a 0 in-
dicating that the number is positive.

B.1.12.1.3 Strings

A string occupies as many bytes as its maximum length plus one. The first
byte contains the current length of the string. The following bytes contain
the string with the first character stored at the lowest address. In the table
shown below, L denotes the current length of the string, and Max denotes the
maximum length:

 @ Current length (L)
 @ +1 First character
 @ +2 Second character
 .
 .
 @ +L Last character
 @ +L+1 Unused
 .
 .
 @ +Max Unused

188 TURBO Pascal Language Manual

Sets B.1.12.1.4

B.1.12.1.4 Sets

An element in a Set occupies one bit, and as the maximum number of ele-
ments in a set is 256, a set variable will never occupy more than 32 bytes
(256/8).

If a set contains less than 256 elements, some of the bits are bound to be
zero at all times and need therefore not be stored. In terms of memory effi-
ciency, the best way to store a set variable of a given type would then be to
"cut off" all insignificant bits, and rotate the remaining bits so that the first
element of the set would occupy the first bit of the first byte. Such rotate ope-
rations, however, are quite slow, and TURBO therefore employs a compro-
mise: Only bytes which are statically zero (i.e. bytes of which no bits are used)
are not stored. This method of compression is very fast and in most cases as
memory efficient as the rotation method.

The number of bytes occupied by a set variable is calculated as (Max div 8) -
(Min div 8) + 1, where Max and Min are the upper and lower bounds of the
base type of that set. The memory address of a specific element E is:

 MemAddress = @ + (E div 8) - (Min div 8)

and the bit address within the byte at MemAddress is:

 BitAddress = E mod 8

where E denotes the ordinal value of the element.

B.1.12.1.5 Pointers

A pointer consists of four bytes containing a segment base address and an
offset. The two least significant bytes contains the offset and the two most
significant bytes the base address. Both are stored in memory using byte re-
versed format, i.e. the least significant byte is stored first. The value nil corre-
sponds to two zero words.

B.1.12.2 Data Structures

Data structures are built from the basic data types using various structuring
methods. Three different structuring methods exist: Arrays, records, and disk
files. The structuring of data does not in any way affect the internal formats of
the basic data types.

MS-DOS/PC-DOS and CP/M-86 189

B.1.12.2.1 Arrays

B.1.12.2.1 Arrays

The components with the lowest index values are stored at the lowest me-
mory address. A multi-dimensional array is stored with the rightmost dimen-
sion increasing first, e.g. given the array

 Board: array[1..8,1..8] of Square

you have the following memory layout of its components:

 Lowest address: Board[1,1]
 Board[1,2]
 .
 .
 Board[1,8]
 Board[2,1]
 Board[2,2]
 .
 .
 .
 .
 Highest address:Board[8,8]

B.1.12.2.2 Records

The first field of a record is stored at the lowest memory address. If the record
contains no variant parts, the length is given by the sum of the lengths of the
individual fields. If a record contains a variant, the total number of bytes occu-
pied by the record is given by the length of the fixed part plus the length of
largest of its variant parts. Each variant starts at the same memory address.

B.1.12.2.3 Disk Files

Disk files are different from other data structures in that data is not stored in
internal memory but in a file on an external device. A disk file is controlled th-
rough a file interface block (FIB) as described in sections B.3.4 and B.2.4. In
general there are two different types of disk files: random access files and text
files.

190 TURBO Pascal Language Manual

Text Files B.1.12.2.4

B.1.12.2.4 Text Files

The basic components of a text file are characters, but a text file is further-
more divided into lines. Each line consists of any number of characters ended
by a CR/LF sequence (ASCII $0D/ $0A). The file is terminated by a Ctrl-Z
(ASCII $1B).

B.1.12.3 Parameters

Parameters are transferred to procedures and functions via the stack which is
addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains the
return address within the code segment (a word). The parameters, if any, are
located below the return address, i.e. at higher addresses on the stack.

If an external function has the following subprogram header:

 function Magic(var R: Real; S: string5): Integer;

then the stack upon entry to Magic would have the following contents:

 < Function result >
 < Segment base address of R >
 < Offset address of R >
 < Mantissa of R next 5 bytes >
 .
 .
 < First character of S >
 .
 .
 < Last character of S >
 < Length of S >
 < Return address > SP

An external subroutine should save the Base Page register (BP) and then copy
the Stack Pointer SP into the Base Page register in order to be able to refer to
parameters. Furthermore the subroutine should reserve space on the stack for
local workarea. This can be obtained by the following instructions:

 PUSH BP
 MOV BP,SP
 SUB SP,WORKAREA

MS-DOS/PC-DOS and CP/M-86 191

B.1.12.3 Parameters

The last instruction will have the effect of adding the following to the stack:

 < Return address > BP
 < The saved BP register >
 < First byte of local workarea >
 .
 .
 < Last byte of local work area > SP

Parameters are accessed via the BP register.

The following instruction will load length of the string into the AL register:

MOV AL,[BP+4]

Before executing a RET instruction the subprogram must reset the Stack
Pointer and Base Page register to their original values. When executing the
RET the parameters may be removed by giving RET a parameter specifying
how many bytes to remove. The following instructions should therefore be
used when exiting from a subprogram:

 MOV SP,BP
 POP BP
 RET NoOfBytesToRemove

B.1.12.3.1 Variable Parameters

With a variable (var) parameter, two words are transferred on the stack giving
the base address and offset of the first byte occupied by the actual para-
meter.

B.1.12.3.2 Value Parameters

With value parameters, the data transferred on the stack depends upon the
type of the parameter as described in the following sections.

192 TURBO Pascal Language Manual

Scalars B.1.12.3.2.1

B.1.12.3.2.1 Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except Reals)
are transferred on the stack as a word. If the variable occupies only one byte
when it is stored, the most significant byte of the parameter is zero.

B.1.12.3.2.2 Reals

A real is transferred on the stack using six bytes.

B.1.12.3.2.3 Strings

When a string is at the top of the stack, the topmost byte contains the length
of the string followed by the characters of the string.

B.1.12.3.2.4 Sets

A set always occupies 32 bytes on the stack (set compression only applies to
the loading and storing of sets).

B.1.12.3.2.5 Pointers

A pointer value is transferred on the stack as two words containing the base
address and offset of a dynamic variable. The value NIL corresponds to two
zero words.

B.1.12.3.2.6 Arrays and Records

Even when used as value parameters, Array and Record parameters are not
actually transferred on the stack. Instead, two words containing the base ad-
dress and offset of the first byte of the parameter are transferred. It is then the
responsibility of the subroutine to use this information to make a local copy of
the variable.

MS-DOS/PC-DOS and CP/M-86 193

B.1.12.4 Function Results

B.1.12.4 Function Results

User written external functions must remove all parameters and the function
result from the stack when they return.

User written external functions must return their results exactly as specified
in the following:

Values of scalar types, except Reals, must be returned in the AX register. If
the result is only one byte then AH should be set to zero. Boolean functions
must return the function value by setting the Z flag (Z = False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest address.
This is done by not removing the function result variable when returning.

Sets must be returned on the top of the stack according to the format descri-
bed in section B.1.12.3.2.3. On exit SP must point at the byte containing the
string length.

Pointer values must be returned in the register pair DX:AX.

B.1.12.5 The Heap and The Stacks

During execution of TURBO Pascal program the following segments are allo-
cated for the progam:

 a Code Segment,
 a Data Segment, and
 a Stack Segment

Two stack-like structures are maintained during execution of a program: the
heap and the stack.

The heap is used to store dynamic variables, and is controlled with the stan-
dard procedures New, Mark, and Release. At the beginning of a program, the
heap pointer HeapPtr is set to low memory in the stack segment and the heap
grows upwards towards the stack. The pre-defined variable HeapPtr contains
the value of the heap pointer and allows the programmer to control the po-
sition of the heap.

194 TURBO Pascal Language Manual

The Heap and The Stacks B.1.12.5

The stack is used to store local variables, intermediate results during evalua-
tion of expressions and to transfer parameters to procedures and functions. At
the beginning of a program, the stack pointer is set to the address of the top
of the stack segment.

On each call to the procedure New and on entering a procedure or function,
the system checks for collision between the heap and the recursion stack. If a
collision has occurred, an execution error results, unless the K compiler direc-
tive is passive ({$K-}).

MS-DOS/PC-DOS and CP/M-86 195

B.2 The MS-DOS / PC-DOS Implementations

B.2 The MS-DOS / PC-DOS Implementations

This section covers items peculiar to the MS-DOS and PC-DOS versions of
TURBO Pascal. For the sake of clarity and ease, these two operating systems
will simply be referred to as DOS in the following.

B.2.1 Standard Identifiers

The following standard identifiers are unique to the DOS implementations:

 LongFilePos LongSeek
 LongFileSize MsDos

B.2.2 Function Calls

For the purpose of making DOS system calls, TURBO Pascal introduces a
procedure MsDos, which has a record as parameter.

Details on DOS system calls and BIOS routines are found in the MS-DOS
Operating System Manual published by MicroSoft.

The parameter to MsDos must be of the type:

 record
 AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
 end;

Before TURBO makes the DOS system call the registers AX, BX, CX, DX, BP,
SI, DI, DS, and ES are loaded with the values specified in the record para-
meter. When DOS has finished operation the Msdos procedure will restore
the registers to the record thus making any results from DOS available.

B.2.3 User Written I/O Drivers

For some applications it is practical for a programmer to define his own input
and output drivers, i.e. routines which perform input and output of characters
to and from an external device. The following drivers are part of the TURBO
environment, and used by the standard I/O drivers (although they are not
available as standard procedures or functions):

196 TURBO Pascal Language Manual

User Written I/O Drivers B.2.3

 function ConSt:boolean;{11}
 function ConIn:Char;{8}
 procedure ConOut(Ch:Char);{2}
 procedure LstOut(Ch:Char);{5}
 procedure AuxOut(Ch:Char);{4}
 function AuxIn: Char;{3}
 procedure UsrOut(Ch:Char);{2}
 function UsrIn: Char;{8}

The ConSt routine is called by the function KeyPressed, the ConIn and Con-
Out routines are used by the CON:, TRM:, and KBD: devices, the LstOut rou-
tine is used by the LST: device, the AuxOut and AuxIn routines are used by
the AUX: device, and the UsrOut and UsrIn routines are used by the USR: de-
vice.

By default, these drivers are assigned to the DOS system calls as showed in
curly brackets in the above listing of drivers.

This, however, may be changed by the programmer by assigning the address
of a self-defined driver procedure or a driver function to one of the following
standard variables:

 Variable Contains the address of the

 ConStPtr ConSt function
 ConInPtr ConIn function
 ConOutPtr ConOut procedure
 LstOutPtr LstOut procedure
 AuxOutPtr AuxOut procedure
 AuxInPtr AuxIn function
 UsrOutPtr UsrOut procedure
 UsrInPtr UsrIn function

A user defined driver procedure or driver function must match the definitions
given above, i.e. a ConSt driver must be a boolean function, a ConIn driver
must be a char function, etc.

MS-DOS/PC-DOS and CP/M-86 197

B.2.4 File Interface Blocks

B.2.4 File Interface Blocks

Each file variable in a program has an associated file interface block (FIB). A
FIB occupies 176 bytes of memory and is for files of type text divided into two
sections: The control section (the first 48 bytes), and the sector buffer (the
last 128 bytes). The control section contains various information on the disk
file or device currently assigned to the file. The sector buffer is used to buffer
input and output from and to the disk file. Random access file variables and
untyped file variables do not have a buffer section and therefore occupy
only 48 bytes.

The table below shows the format of a FIB:

 @ Flags byte
 @ +1 File type
 @ +2 Character buffer
 @ +3 Sector buffer pointer
 @ +4 Number of records (LSB)
 .
 @ +7 Number of records (MSB)
 @ +8 Unused (reserved)
 @ +10 Unused (reserved)
 @ +11 First byte of DOS FCB
 .
 @ +25 Record length in bytes (LSB)
 @ +26 Record length in bytes (MSB)
 .
 @ +44 Current record number (LSB)
 @ +47 Current record number (MSB)
 (Last byte of FCB)
 @ +48 First byte of sector buffer
 .
 @ +175 Last byte of sector buffer

The flags byte at @ contains two one-bit flags which indicate the current sta-
tus of the file:

 bit 0 Input flag. High if input is allowed.
 bit 1 Output flag. High if output is allowed.

The file type field at @ +1 specifies the type of device currently assigned to the
file variable. The following values can occur:

198 TURBO Pascal Language Manual

File Interface Blocks B.2.4

 0 The console device (CON:)
 1 The terminal device (TRM:)
 2 The keyboard device (KBD:)
 3 The list device (LST:)
 4 The auxiliary device (AUX:)
 5 The user device (USR:)
 6 A diskfile

When a file is assigned to a logical device, only the first three bytes of the FIB
are of significance.

The sector buffer pointer at @ +3 contains an offset from the first byte of the
sector buffer.

The 'number of records' field starting at @ +4 is a 32-bit number. All DOS file
I/O is performed through system functions 39 and 40 (random block read and
random block write), and the record length field in the FCB is always set to 1.

The sector buffer starting at @ +48 is included in file variables of type Text
only. Random access file variables and untyped file variables occupy only 48
bytes, and data is always transferred directly to or from the variable to be read
or written, leaving all blocking and deblocking to DOS.

B.2.5 Random Access Files

A random access file consists of a sequence of records, all of the same length
and same internal format. To optimize file storage capacity, the records of a
file are totally contiguous.

TURBO saves no information about the record length. The programmer must
therefore see to it that a random access file is accessed with the correct re-
cord length.

The size returned by the standard function Filesize is obtained form the DOS
directory.

MS-DOS/PC-DOS and CP/M-86 199

B.2.6 Operations on Files

B.2.6 Operations on Files

B.2.6.1 Extended File Size

The following three additional file routines exist to accommodate the ex-
tended range of records in DOS. These are:

 LongFileSize function,
 LongFilePosition function, and
 LongSeek procedure

They correspond to their Integer equivalents FileSize, FilePosition, and Posi-
tion but operate with Reals. The functions thus return results of type Real, and
the second parameter of the LongSeek procedure must be an expression of
type Real.

B.2.6.2 File of Byte

In the CP/M implementations, access to non-TURBO files (except text files)
must be done through untyped files because the two first bytes of typed
TURBO files always contain the number of components in the file. This is not
the case in the DOS versions, however, and a non-TURBO file may therefore
be declared as a file of byte and accessed randomly with Seek, Read, and
Write.

B.2.6.3 Flush Procedure

The Flush procedure has no effect in DOS, as DOS file variables do not emp-
loy a sector buffer.

200 TURBO Pascal Language Manual

The CP/M-86 Implementation B.3

B.3 The CP/M-86 Implementation

B.3.1 Standard Identifiers

The standard identifier Bdos is unique to the CP/M-86 implementation.

B.3.2 Function Calls

For the purpose of calling the CP/M-86 BDOS, TURBO Pascal introduces a
procedure Bdos, which has a record as parameter.

Details on BDOS and BIOS routines are found in the CP/M-86 Operating Sy-
stem Manual published by Digital Research.

The parameter to Bdos must be of the type:

 record
 AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
 end;

Before TURBO calls the BDOS the registers AX, BX, CX, DX, BP, SI, DI, DS,
and ES are loaded with the values specified in the record parameter. When
the BDOS has finished operation the Bdos procedure will restore the regis-
ters to the record thus making any results from the BDOS available.

B.3.3 User Written I/O Drivers

For some applications it is practical for a programmer to define his own input
and output drivers, i.e. routines which perform input and output of characters
to and from an external device. The following drivers are part of the TURBO
environment, and used by the standard I/O drivers (although they are not
available as standard procedures or functions):

 function ConSt:boolean;{6}
 function ConIn:Char;{6}
 procedure ConOut(Ch:Char);{6}
 procedure LstOut(Ch:Char);{5}
 procedure AuxOut(Ch:Char);{4}
 function AuxIn: Char;{3}
 procedure UsrOut(Ch:Char);{6}
 function UsrIn: Char;{6}

MS-DOS/PC-DOS and CP/M-86 201

B.3.3 User Written I/O Drivers

The ConSt routine is called by the function KeyPressed, the ConIn and Con-
Out routines are used by the CON:, TRM:, and KBD: devices, the LstOut rou-
tine is used by the LST: device, the AuxOut and AuxIn routines are used by
the AUX: device, and the UsrOut and UsrIn routines are used by the USR: de-
vice.

By default, these drivers are assigned to the BDOS system calls as showed in
curly brackets in the above listing of drivers.

This, however, may be changed by the programmer by assigning the address
of a self-defined driver procedure or a driver function to one of the following
standard variables:

 Variable Contains the address of the

 ConStPtr ConSt function
 ConInPtr ConIn function
 ConOutPtr ConOut procedure
 LstOutPtr LstOut procedure
 AuxOutPtr AuxOut procedure
 AuxInPtr AuxIn function
 UsrOutPtr UsrOut procedure
 UsrInPtr UsrIn function

A user defined driver procedure or driver function must match the definitions
given above, i.e. a ConSt driver must be a boolean function, a ConIn driver
must be a char function, etc.

B.3.4 File Interface Blocks

Each file variable in a program has an associated file interface block (FIB). A
FIB occupies 176 bytes of memory and is divided into two sections: The con-
trol section (the first 48 bytes), and the sector buffer (the last 128 bytes). The
control section contains various information on the disk file or device cur-
rently assigned to the file. The sector buffer is used to buffer input and output
from and to the disk file.

202 TURBO Pascal Language Manual

File Interface Blocks B.3.4

The table below shows the format of a FIB:

 @ Flags byte
 @ +1 File type
 @ +2 Character buffer
 @ +3 Sector buffer pointer
 @ +4 Number of records (LSB)
 @ +5 Number of records (MSB)
 @ +6 Record length in bytes (LSB)
 @ +7 Record length in bytes (MSB)
 @ +8 Current record number (LSB)
 @ +9 Current record number (MSB)
 @ +10 Unused (reserved)
 @ +11 Unused (reserved)
 @ +12 First byte of CP/M FCB
 .
 .
 @ +47 Last byte of CP/M FCB
 @ +48 First byte of sector buffer
 .
 .
 @ +175 Last byte of sector buffer

The flags byte at @ contains four one bit flags which indicate the current sta-
tus of the file:

 bit 0 Input flag. High if input is allowed.
 bit 1 Output flag. High if output is allowed.
 bit 2 Write semaphore. High if data has been written to
 the sector buffer.
 bit 3 Read semaphore. High if the contents of the sector
 buffer is undefined.

The file type field at @ +1 specifies the type of device currently assigned to the
file variable. The following values can occur:

 0 The console device (CON:)
 1 The terminal device (TRM:)
 2 The keyboard device (KBD:)
 3 The list device (LST:)
 4 The auxiliary device (AUX:)
 5 The user device (USR:)
 6 A diskfile

MS-DOS/PC-DOS and CP/M-86 203

B.3.4 File Interface Blocks

The sector buffer pointer at @ +3 contains an offset from the first byte of the
sector buffer. The following three fields are used only by random access files
(defined files) and untyped files. Each field consists of two bytes in byte rever-
sed format. Bytes @ +10 and @ +11 are currently unused, but reserved for fu-
ture expansion. Bytes @ +12 through @ +47 contain a CP/M file control block
(FCB). The last block of the FIB is the sector buffer used for buffering input
and output from and to disk files.

When a file is assigned to a logical device, only the first three bytes of the FIB
are of significance.

The FIB format described above applies to all defined files and textfiles. The
FIB of an untyped file has no sector buffer, as data is transferred directly bet-
ween a variable and the disk file. Thus, the length of the FIB of an untyped file
is only 48 bytes.

B.3.5 Random Access Files

A random access file consists of a sequence of records, all of the same length
and same internal format. To optimize file storage capacity, the records of a
file are totally contiguous. The first four bytes of the first sector of a file con-
tains the number of records in the file and the length of each record in bytes.
The first record of the file is stored starting at the fourth byte.

 sector 0, byte 0: Number of records (LSB)
 sector 0, byte 1: Number of records (MSB)
 sector 0, byte 2: Record length (LSB)
 sector 0, byte 3: Record length (MSB)

204 TURBO Pascal Language Manual

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS C

 C. SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS

This appendix lists all standard procedures and functions available in TURBO
Pascal and describes their syntax, their parameters, and their types. The fol-
lowing symbols are used to denote elements of various types:

 type any type
 string any string type
 file any file type
 scalar any scalar type
 pointer any pointer type

Where parameter type specification is not present, it means that the pro-
cedure or function accepts variable parameters of any type.

C.1 Input/Output Procedures and Functions

The following procedures use a non-standard syntax in their parameter lists:

procedure
 Read(var F: file of type; var v: type);
 Read(var F: text; var I: Integer);
 Read(var F: text; var R: Real);
 Read(var F: text; var C: Char);
 Read(var F: text; var S: string);
 Readln(var F: text);
 Write(var F: file of type; var v: type);
 Write(var F: text; I: Integer);
 Write(var F: text; R: Real);
 Write(var F: text; B: Boolean);
 Write(var F: text; C: Char);
 Write(var F: text; S: string);
 Writeln(var F: text);

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 205

C.2 Arithmetic Functions

C.2 Arithmetic Functions

function
 Abs (I: Integer): Integer;
 Abs (R: Real): Real;
 ArcTan (R: Real): Real;
 Cos (R: Real): Real;
 Exp (R: Real): Real;
 Frac (R: Real): Real;
 Int (R: Real): Real;
 Ln (R: Real): Real;
 Sin (R: Real): Real;
 Sqr (I: Integer): Integer;
 Sqr (R: Real): Real;
 Sqrt (R: Real): Real;

C.3 Scalar Functions

function
 Odd (I: Integer): Boolean;
 Pred (X: scalar): scalar;
 Succ (X: scalar) : scalar;

C.4 Transfer Functions

function
 Chr (I: Integer): Char;
 Ord (X: scalar): Integer;
 Round (R: Real): Integer;
 Trunc (R: Real): Integer;

206 TURBO Pascal Language Manual

String Procedures and Functions C.5

C.5 String Procedures and Functions

The Str procedure uses a non-standard syntax for its numeric parameter.

procedure
 Delete (var S: string; Pos, Len: Integer);
 Insert (S:string; var D:string; Pos: Integer);
 Str (I: Integer; var S:string);
 Str (R: Real; var S:string);
 Val (S:string; var R: Real; var P: Integer);
 Val (S:string; var I,P: Integer);

function
 Concat (S1,S2,...,Sn:string):string;
 Copy (S:string; Pos, Len: Integer):string;
 Length (S:string): Integer;
 Pos (Pattern, Source:string): Integer;

C.6 File handling routines

procedure
 Assign (var F: file; name: string);
 BlockRead (var F: file; var Dest: Type; Num: Integer);
 BlockWrite (var F: file; var Dest: Type; Num: Integer);
 Chain (var F: file);
 Close (var F: file);
 Erase (var F: file);
 Execute (var F: file);
 Rename (var F: file; Name:string);
 Reset (var F: file);
 Rewrite (var F: file);
 Seek (var F: file of type; Pos: Integer);

function
 Eof (var F: file): Boolean;
 Eoln (var F: Text): Boolean;
 FilePos (var F: file of type): Integer;
 FilePos (var F: file): Integer;
 FileSize (var F: file of type): Integer;
 FileSize (var F: file): Integer;
 Seek (var F: file; pos: Integer);

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 207

C.7 Heap Control Procedures and Functions

C.7 Heap Control Procedures and Functions

procedure
 GetMem (var P: pointer; I: Integer);
 Mark (var P: pointer);
 New (var P: pointer);
 Release (var P: pointer);

function
 MemAvail: Integer;
 Ord (P: pointer): Integer;
 Ptr (I: Integer): pointer;

C.8 Screen Related Procedures

procedure
 CrtExit;
 CrtInit;
 ClrEol;
 ClrScr;
 DelLine;
 GotoXY (X, Y: Integer);
 InsLine;
 LowVideo;
 NormVideo;

C.9 Miscellaneous Procedures and Functions

procedure
 Bdos (func,param: Integer);
 Bios (func,param: Integer);
 Delay (mS: Integer);
 FillChar (var dest; length: Integer; data: Char);
 FillChar (var dest; length: Integer; data: byte);
 Halt;
 Move (var source,dest; length: Integer);
 Randomize;

208 TURBO Pascal Language Manual

Miscellaneous Procedures and Functions C.9

function
 Addr (var variable): Integer;
 Addr (<function identifier>): Integer;
 Addr (<procedure identifier>): Integer;
 Bdos (Func, Param: Integer): Byte;
 BdosHL (Func, Param: Integer): Integer;
 Bios (Func, Param: Integer): Byte;
 BiosHL (Func, Param: Integer): Integer;
 Hi (I: Integer): Integer;
 IOresult : Boolean;
 KeyPressed : Boolean;
 Lo (I: Integer): Integer;
 Random (Range: Integer): Integer;
 Random : Real;
 SizeOf (var variable): Integer;
 SizeOf (<type identifier>): Integer;
 Swap (I: Integer): Integer;
 UpCase (Ch: Char): Char;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 209

C.9 Miscellaneous Procedures and Functions

 Notes:

210 TURBO Pascal Language Manual

SUMMARY OF OPERATORS D

 D. SUMMARY OF OPERATORS

The following table summarizes all operators of TURBO Pascal. The operators
are grouped in order of descending precedence. Where Type of operand is in-
dicated as Integer, Real, the result is as follows:

 Operands Result
 Integer, Integer Integer
 Real, Real Real
 Real, Integer Real

Operator Operation Type of operand(s) Type of result

+ unary sign identity Integer, Real as operand
- unary sign inversion Integer, Real as operand

not negation Integer, Boolean as operand

* multiplication Integer, Real Integer, Real
 set intersection any set type as operand
/ division Integer, Real Real
div Integer division Integer Integer
mod modulus Integer Integer
and arithmetical and Integer Integer
 logical and Boolean Boolean
shl shift left Integer Integer
shr shift right Integer Integer

+ addition Integer, Real Integer, Real
 concatenation string string
 set union any set type as operand
- subtraction Integer, Real Integer, Real
 set difference any set type as operand
or arithmetical or Integer Integer
 logical or Boolean Boolean
xor arithmetical xor Integer Integer
 logical xor Boolean Boolean

SUMMARY OF OPERATORS 211

D SUMMARY OF OPERATORS

= equality any scalar type Boolean
 equality string Boolean
 equality any set type Boolean
 equality any pointer type Boolean
<> inequality any scalar type Boolean
 inequality string Boolean
 inequality any set type Boolean
 inequality any pointer type Boolean
>= greater or equal any scalar type Boolean
 greater or equal string Boolean
 set inclusion any set type Boolean
<= less or equal any scalar type Boolean
 less or equal string Boolean
 set inclusion any set type Boolean
> greater than any scalar type Boolean
 greater than string Boolean
< less than any scalar type Boolean
 less than string Boolean
in set membership see below Boolean

The first operand of the in operator may be of any scalar type, and the second
operand must be a set of that type.

212 TURBO Pascal Language Manual

SUMMARY OF COMPILER DIRECTIVES E

 E. SUMMARY OF COMPILER DIRECTIVES

A number of features of the TURBO Pascal compiler are controlled through
compiler directives. A compiler directive is introduced as a comment with a
special syntax which means that whenever a comment is allowed in a pro-
gram, a compiler directive is also allowed.

A compiler directive consists of an opening bracket immediately followed by a
dollar-sign immediately followed by one compiler directive letter or a list of
compiler directive letters separated by commas, ultimately terminated by a
closing bracket.

Examples:
 {$I-}
 {$I INCLUDE.FIL}
 {$B-,R+,V-}
 (*$X-*)

Notice that no spaces are allowed before or after the dollar-sign. A + sign af-
ter a directive indicates that the associated compiler feature is enabled (ac-
tive), and a minus sign indicates that is disabled (passive).

 IMPORTANT NOTICE

All compiler directives have default values. These have been chosen
to optimize execution speed and minimize code size. This means that
e.g. code generation for recursive procedures (CP/M-80 only) and in-
dex checking has been disabled. Check below to make sure that your
programs include the required compiler directive settings!

SUMMARY OF COMPILER DIRECTIVES 213

E.1 Common Compiler Directives

E.1 Common Compiler Directives

E.1.1 B - I/O Mode Selection

Default: B+

The B directive controls input/output mode selection. When active, {$B+},
the CON: device is assigned to the standard files Input and Output, i.e. the de-
fault input/output channel. When passive, {$B-}, the TRM: device is used.
This directive is global to an entire program block and cannot be re-
defined throughout the program. See sections 14.5.3 and 14.6.1 for further
details.

E.1.2 C - Control S and C

Default: C+

The C directive controls control character interpretation during console I/O.
When active, {$C+}, a Ctrl-C entered in response to a Read or Readln state-
ment will interrupt program execution, and a Ctrl-S will toggle screen output
off and on. When passive, {$C-}, control characters are not interpreted. The
active state slows screen output somewhat, so if screen output speed is im-
perative, you should switch off this directive. This directive is global to an
entire program block and cannot be re-defined throughout the program.

E.1.3 I - I/O Error Handllng

Default: I+

The I directive controls I/O error handling. When active, {$I+}, all I/O opera-
tions are checked for errors. When passive; {$I-}, it is the responsibility of the
programmer to check I/O errors through the standard function IOresult. See
section 14.8 for further details.

E.1.4 I - Include Files

The I directive succeeded by a file name instructs the compiler to include the
file with the specified name in the compilation. Include files are discussed in
detail in chapter 17.

214 TURBO Pascal Language Manual

R - Index Range Check E.1.5

E.1.5 R - Index Range Check

Default: R-

The R directive controls run-time index checks. When active, {$R+}, all array
indexing operations are checked to be within the defined bounds, and all as-
signments to scalar and subrange variables are checked to be within range.
When passive, {$R-}, no checks are performed, and index errors may well
cause a program to go haywire. It is a good idea to activate this directive
while developing a program. Once debugged, execution will be speeded up by
setting it passive (the default state). For further discussion, see sections 8.4
and 10.1.

E.1.6 V - Var-parameter Type Checking

Default: V+

The V compiler directive controls type checking on strings passed as var-
parameters. When active, {$V+}, strict type checking is performed, i.e. the
lengths of actual and formal parameters must match. When passive, {$V-},
the compiler allows passing of actual parameters which do not match the
length of the formal parameter. See sections A.3 and B.1.3 for further details.

E.1.7 U - User Interrupt

Default: U-

The U directive controls user interrupts. When active, {$U+}, the user may in-
terrupt the program anytime during execution by entering a Ctrl-C. When pas-
sive, {$U-}, this has no effect. Activating this directive will significantly slow
down execution speed.

SUMMARY OF COMPILER DIRECTIVES 215

E.2 CP/M-80 Compiler Directives

The following directives are unique to the CP/M-80 implementation.

E.2.1 A - Absolute Code

Default: A+

The A directive controls generation of absolute, i.e. non-recursive, code.
When active, {$A+}, absolute code is generated. When passive, {$A-}, the
compiler generates code which allows recursive calls. This code requires
more memory and executes slower. For further information, see sections
8 and 16.

E.2.2 W - Nesting of With Statements

Default: W2

The W directive controls the level of nesting of With statements, i.e. the
number of records which may be 'opened' within one block. The W must
be immediately followed by a digit between 1 and 9. For further details,
please refer to section 11.2.

E.2.3 X - Array Optimization

Default: X+

The X directive controls array optimization. When active, {$X+}, code
generation for arrays is optimized for maximum speed. When passive,
{$X-}, the compiler minimizes the code size instead. This is discussed
further in section 10.1.

216 TURBO Pascal Language Manual

K - Stack Checking E.3.1

E.3 CP/M-86 / MS-DOS / PC-DOS Compiler Directives

The following directive is unique to the CP/M-86 / MS-DOS implementa-
tions:

E.3.1 K - Stack Checking

Default: K+

The K directive controls the generation of stack check code. When active,
{$K+}, a check is made to ensure that space is available for local variables on
the stack before each call to a subprogram. When passive, {$K-}, no checks
are made.

SUMMARY OF COMPILER DIRECTIVES 217

E.3.1 K - Stack Checking

 Notes:

218 TURBO Pascal Language Manual

TURBO VS. STANDARD PASCAL F

 F. TURBO VS. STANDARD PASCAL

The TURBO Pascal language closely follows the Standard Pascal defined by
Jensen & Wirth in their User Manual and Report, with only minor differen-
cies introduced for the sheer purpose of efficiency. These differences are desc-
ribed in the following. Notice that the extensions offered by TURBO Pascal
are not discussed.

F.1 Dynamic Variables

Dynamic variables and pointers use the standard procedures New, Mark, and
Release instead of the New and Dispose procedures suggested by Standard
Pascal. Primarily this deviation from the standard is far more efficient in terms
of execution speed and required support code, and secondly it offers compati-
bility with other popular Pascal compilers (e.g. UCSD Pascal).

The procedure New will not accept variant record specifications. This restric-
tion, however, is easily circumvented by using the standard procedure Get-
Mem.

F.2 Recursion

CP/M-80 version only: Because of the way local variables are handled dur-
ing recursion, a variable local to a subprogram must not be passed as a var-
parameter in recursive calls.

F.3 Get and Put

The standard procedures Get and Put are not implemented. Instead, the Read
and Write procedures have been extended to handle all I/O needs. The reason
for this is threefold: Firstly Read and Write gives much faster I/O, secondly
variable space overhead is reduced, as file buffer variables are not required,
and thirdly the Read and Write procedures are far more versatile and easier to
understand than Get and Put.

TURBO VS. STANDARD PASCAL 219

F.4 Goto Statements

F.4 Goto Statements

A goto statement must not leave the current block.

F.5 Page Procedure

The standard procedure Page is not implemented, as the CP/M operating sy-
stem does not define a form-feed character.

F.6 Packed Variables

The reserved word packed has no effect in TURBO Pascal, but it is still allo-
wed. This is because packing occurs automatically whenever possible. For the
same reason, standard procedures Pack and Unpack are not implemented.

F.7 Procedural Parameters

Procedures and functions cannot be passed as parameters.

220 TURBO Pascal Language Manual

COMPILER ERROR MESSAGES G

 G. COMPILER ERROR MESSAGES

The following is a listing of error messages you may get from the compiler.
When encountering an error, the compiler will always print the error number
on the screen. Explanatory texts will only be issued if you have included error
messages (answer Y to the first question when you start TURBO).

Many error messages are totally self-explanatory, but some need a little ela-
boration as provided in the following.

01 ';' expected
02 ':' expected
03 ',' expected
04 '(' expected
05 ')' expected
06 '=' expected
07 ':=' expected
08 '[' expected
09 ']' expected
10 '.' expected
11 '..' expected
12 BEGlN expected
13 DO expected
14 END expected
15 OF expected
16 PROCEDURE or FUNCTION expected
17 THEN expected
18 TO or DOWNTO expected
20 Boolean expression expected
21 File variable expected
22 Integer constant expected
23 Integer expression expected
24 Integer variable expected
25 Integer or real constant expected
26 Integer or real expression expected
27 Integer or real variable expected
28 Pointer variable expected
29 Record variable expected
30 Simple type expected
 Simple types are all scalar types, except real.
31 Simple expression expected
32 String constant expected

COMPILER ERROR MESSAGES 221

G COMPILER ERROR MESSAGES

33 String expression expected
34 String variable expected
35 Textfile expected
36 Type identifier expected
37 Untyped file expected
40 Undefined label
 A statement references an undefined label.
41 Unknown identifier or syntax error
 Unknown label, constant, type, variable, or field identifier, or syntax
 error in statement.
42 Undefined pointer type in preceding type definitions
 A preceding pointer type definition contains a reference to an unk-
 nown type identifier.
43 Duplicate identifier or label
 This identifier or label has already been used within the current
 block.
44 Type mismatch
 1) Incompatible types of the variable and the expression in an as-
 signment statement 2) Incompatible types of the actual and the for-
 mal parameter in a call to a subprogram. 3) Expression type incom-
 patible with index type in array assignment. 4) Types of operands in
 an expression are not compatible.
45 Constant out of range
46 Constant and CASE selector type does not match
47 Operand type(types) does(do) not match operator
 E.g. 'A' div '2'
48 Invalid result type
 Valid types are all scalar types, string types, and pointer types.
49 Invalid string length
 The length of a string must be in the range 1..255.
50 String constant length does not match type
51 Invalid subrange base type
 Valid base types are all scalar types, except real.
52 Lower bound > upper bound
 The ordinal value of the upper bound must be greater than or equal
 to the ordinal value of the lower bound.
53 Reserved word
 These may not be used as identifiers.
54 Illegal assignment
55 String constant exceeds line
 String constants must not span lines.

222 TURBO Pascal Language Manual

COMPILER ERROR MESSAGES G

56 Error in integer constant
 An Integer constant does not conform to the syntax described in
 section 4.2, or it is not within the Integer range -32768..32767.
 Whole Real numbers should be followed by a decimal point and a
 zero, e.g. 123456789.0.
57 Error in real constant
 The syntax of Real constants is defined in section 4.2.
58 Illegal character in identifier
60 Constants are not allowed here
61 Files and pointers are not allowed here
62 Structured variables are not allowed here
63 Textfiles are not allowed here
64 Textfiles and untyped files are not allowed here
65 Untyped files are not allowed here
66 I/O not allowed here
 Variables of this type cannot be input or output.
67 Files must be VAR parameters
68 File components may not be files
 file of file constructs are not allowed.
69 Invalid ordering of fields
70 Set base type out of range
 The base type of a set must be a scalar with no more than 256 pos-
 sible values or a subrange with bounds in the range 0..255.
71 Invalid GOTO
 A GOTO cannot reference a label within a FOR loop from outside
 that FOR loop.
72 Label not within current block
 A GOTO statement cannot reference a label outside the current
 block.
73 Undefined FORWARD procedure(s)
 A subprogram has been forward declared, but the body never
 occurred.
74 INLINE error
75 Illegal use of ABSOLUTE
 1) Only one identifier may appear before the colon in an absolute
 variable declaration. 2) The absolute clause may not be used in a
 record.
90 File not found
 The specified include file does not exist.
91 Unexpected end of source
 Your program cannot end the way it does. The program probably
 has more begins than ends.

COMPILER ERROR MESSAGES 223

G COMPILER ERROR MESSAGES

97 Too many nested WITHs
 Use the W compiler directive to increase the maximum number of
 nested WITH statements. Default is 2. (CP/M-80 only).
98 Memory overflow
 You are trying to allocate more storage for variables than is avai-
 label.
99 Compiler overflow
 There is not enough memory to compile the program. This error may
 occur even if free memory seems to exist; it is, however, used by the
 stack and the symbol table during compilation. Break your source
 text into smaller segments and use include files.

224 TURBO Pascal Language Manual

RUN-TIME ERROR MESSAGES H

 H. RUN-TIME ERROR MESSAGES

Fatal errors at run-time result in a program halt and the display of the mes-
sage:

+--+
| |
| Run-time error NN, PC=addr |
| Program aborted |
| |
+--+

where NN is the run-time error number, and addr is the address in the pro-
gram code where the error occurred. The following contains explanations of
all run-time error numbers. Notice that the numbers are hexadecimal!

01 Floating point overflow.
02 Division by zero attempted.
03 Sqrt argument error.
 The argument passed to the Sqrt function was negative.
04 Ln argument error.
 The argument passed to the Ln function was zero or negative.
10 String length error.
 1) A string concatenation resulted in a string of more than 255 cha-
 racters. 2) Only strings of length 1 can be converted to a character.
11 Invalid string index.
 Index expression is not within 1..255 with Copy, Delete or Insert
 procedure calls.
90 Index out of range.
 The index expression of an array subscript was out of range.
91 Scalar or subrange out of range.
 The value assigned to a scalar or a subrange variable was out of
 range.
92 Out of integer range.
 The real value passed to Trunc or Round was not within the Integer
 range -32768..32767.
FF Heap/stack collision.
 A call was made to the standard procedure New or to a recursive
 subprogram, and there is insufficient free memory.

RUN-TIME ERROR MESSAGES 225

H RUN-TIME ERROR MESSAGES

 Notes:

226 TURBO Pascal Language Manual

I/O ERROR MESSAGES I

 I. I/O ERROR MESSAGES

An error in an input or output operation at run-time results in an I/O error. If
I/O checking is active (I compiler directive active), an I/O error causes the
program to halt and the following error message is displayed:

+--+
| |
| I/O error NN, PC=addr |
| Program aborted |
| |
+--+

where NN is the I/O error number, and addr is the address in the program
code where the error occurred.

If I/O error checking is passive ({$I-}), an I/O error will not cause the program
to halt. Instead, all further I/O is suspended until the result of the I/O opera-
tion has been examined with the standard function IOresult. If I/O is attemp-
ted before IOresult is called after an error, a new error occurs, possibly hang-
ing the program.

The following contains explanations of all run-time error numbers. Notice that
the numbers are hexadecimal!

01 File does not exist.
 The file name used with Reset, Erase, Rename, Execute, or Chain
 does not specify an existing file.
02 File not open for input.
 1) You are trying to read (with Read or Readln) from a file without a
 previous Reset or Rewrite. 2) You are trying to read from a text file
 which was prepared with Rewrite (and thus is empty). 3) You are
 trying to read from the logical device LST:, which is an output-only
 device.
03 File not open for output.
 1) You are trying to write (with Write or Writeln) to a file without a
 previous Reset or Rewrite. 2) You are trying to write to a text file
 which was prepared with Reset. 3) You are trying to write to the lo-
 gical device KBD:, which is an input-only device.

I/O ERROR MESSAGES 227

I I/O ERROR MESSAGES

04 File not open.
 You are trying to access (with BlockRead or Block Write) a file with-
 out a previous Reset or Rewrite.
10 Error in numeric format.
 The string read from a text file into a numeric variable does not con-
 form to the proper numeric format (see section 4.2).
20 Operation not allowed on a logical device.
 You are trying to Erase, Rename, Execute, or Chain a file assigned to
 a logical device.
21 Not allowed in direct mode.
 Programs cannot be Executed or Chained from a program running in
 direct mode (i.e. a program activated with a Run command while
 the Memory compiler option is set).
22 Assign to std files not allowed.
90 Record length mismatch.
 The record length of a file variable does not match the file you are
 trying to associate it with.
91 Seek beyond end-of-file.
99 Unexpected end-of-file.
 1) Physical end-of-file encountered before EOF-character (Ctrl-Z)
 when reading from a text file. 2) An attempt was made to read
 beyond end-of-file on a defined file. 3) A Read or BlockRead is
 unable to read the next sector of a defined file. Something may be
 wrong with the file, or (in the case of BlockRead) you may be trying
 to read past physical EOF.
F0 Disk write error.
 Disk full while attempting to expand a file. This may occur with the
 output operations Write, WriteLn, BlockWrite, and Flush, but also
 Read, ReadLn, and Close may cause this error, as they cause the
 write buffer to be flushed.
F1 Directory is full.
 You are trying to Rewrite a file, and there is no more room in the
 disk directory.
F2 File size overflow.
 You are trying to Write a record beyond 65535 to a defined file.
FF File disappeared.
 An attempt was made to Close a file which was no longer present in
 the disk directory, e.g. because of an unexpected disk change.

228 TURBO Pascal Language Manual

TRANSLATING ERROR MESSAGES J

 J. TRANSLATING ERROR MESSAGES

The compiler error messages are collected in the file TURBO.MSG. These
messages are in English but may easily be translated into any other language
as described in the following.

The first 24 lines of this file define a number of text constants for subsequent
inclusion in the error message lines; a technique which drastically reduces the
disk and memory requirements of the error messages. Each constant is identi-
fied by a control character, denoted by a ^ character in the following listing.
The value of each constant is anything that follows on the same line. All cha-
racters are significant, also leading and trailing blanks.

The remaining lines each contain one error message, starting with the error
number and immediately followed by the message text. The message text
may consist of any characters and may include previously defined constant
identifiers (control characters). Appendix G lists the resulting messages in full.

When you translate the error messages, the relation between constants and
error messages will probably be quite different from the English version listed
here. Start therefore with writing each error message in full, disregarding the
use of constants. You may use these error messages, but they will require ex-
cessive space. When all messages are translated, you should find as many
common denominators as possible. Then define these as constants at the top
of the file and include only the constant identifiers in subsequent message
texts. You may define as few or as many constants as you need, the restric-
tion being only the number of control characters.

As a good example of the use of constants, consider errors 25, 26, and 27.
These are defined exclusively by constant identifiers, 15 in total, but would re-
quire 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG.OVR file. Control
characters are entered with the Ctrl-P prefix, i.e. to enter a Ctrl-A (^A) into
the file, hold down the <CONTROL> key and press first P, then A. Control cha-
racters appear dim on the screen (if it has any video attributes).

Notice that the TURBO editor deletes all trailing blanks. The original message
therefore does not use trailing blanks in any messages.

TRANSLATING ERROR MESSAGES 229

J.1 Error Message File Listing

J.1 Error Message File Listing

 ^A are not allowed
 ^B can not be
 ^C constant
 ^D does not
 ^B expression
 ^F identifier
 ^G file
 ^H here
 ^KInteger
 ^LFile
 ^NIllegal
 ^O or
 ^PUndefined
 ^Q match
 ^R real
 ^SString
 ^TTextfile
 ^U out of range
 ^V variable
 ^W overflow
 ^X expected
 ^Y type
 ^[Invalid
 ^] pointer
 01';'^X
 02':'^X
 03','^X
 04'('^X
 05')'^X
 06'='^X
 07':='^X
 08'['^X
 09']'^X
 10'.'^X
 11'..'^X
 12BEGIN^X
 13DO^X
 14END^X
 15OF^X
 17THEN^X
 18TO^O DOWNTO^X
 20Boolean^E^X

230 TURBO Pascal Language Manual

Error Message File Listing J.1

 21^L^V^X
 22^K^C^X
 23^K^E^X
 24^K^V^X
 25^K^O^R^C^X
 26^K^O^R^E^X
 27^K^O^R^V^X
 28Pointer^V^X
 29Record^V^X
 30Simple^Y^X
 31Simple^E^X
 32^S^C^X
 32^S^E^X
 34^S^V^X
 35^T^X
 36Type^F^X
 37Untyped^G^X
 40^P label
 41Unknown^F^O syntax error
 42^P^]^Y in preceding^Y definitions
 43Duplicate^F^O label
 44Type mismatch
 45^C^U
 46^C and CASE selector^Y^D^Q
 47Operand^Y(s)^D^Q operator
 48^[result^Y
 49^[^S length
 50^S^C length^D^Q^Y
 51^[subrange base^Y
 52Lower bound > upper bound
 53Reserved word
 54^N assignment
 55^S^C exceeds line
 56Error in integer^C
 57Error in^R^C
 58^N character in^F
 60^Cs^A^H
 61^Ls and^]s^A^H
 62Structured^Vs^A^H
 63^Ts^A^H
 64^Ts and untyped^Gs^A^H
 65Untyped^Gs^A^H
 66I/O^A
 67^Ls must be^V parameters

TRANSLATING ERROR MESSAGES 231

J.1 Error Message File Listing

 68^L components^B^Gs
 69^[^Odering of fields
 70Set base^Y^U
 71^[GOTO
 72Label not within current block
 73^P FORWARD procedure(s)
 74INLINE error
 75^N use of ABSOLUTE
 90^L not found
 91Unexpected end of source
 97Too many nested WITH's
 98Memory^W
 99Compiler^W

232 TURBO Pascal Language Manual

TURBO SYNTAX K

 K. TURBO SYNTAX

The syntax of the TURBO Pascal language is presented here using the forma-
lism known as the Backus-Naur Form. The following symbols are meta-
symbols belonging to the BNF formalism, and not symbols of the TURBO
Pascal language:

 ::= Means "is defined as".
 | Means "or".
 {} Enclose items which may be repeated zero or more times.

All other symbols are part of the language. Each syntactic construct is printed
in italics, e.g.: block and case-element. reserved words are printed in bold-
face, e.g.: array and for.

actual-parameter ::= expression | variable
adding-operator ::= +|-|or|xor
array-constant ::= (structured-constant {,structured-constant})
array-type ::= array [index-type {,index-type}] of component-type
array-variable ::= variable
assignment-statement ::= variable := expression |
 function-identifier := expression
base-type ::= simple-type
block ::= declaration-part statement-part
case-element ::= case-list : statement
case-label ::= constant
case-label-list ::= case-label {,case-label}
case-list ::= case-list-element {,case-list-element}
case-list-element ::= constant | constant .. constant
case-statement ::= case expression of case-element { ; case-element} end
 | case expression of case-element { ; case-element}
 otherwise statement { ; statement} end
complemented-factor ::= signed-factor | not signed-factor
component-type ::= type
component-variable ::= indexed-variable | field-designator
compound-statement ::= begin statement { ; statement} end
conditional-statement ::= if-statement | case-statement
constant ::= unsigned-number | sign unsigned-number | constant-identifier
 | sign constant-identifier | string

TURBO SYNTAX 233

K TURBO SYNTAX

constant-definition-part ::= const constant-definition
 { ; constant-definition};
constant-definition ::= untyped-constant-definition |
 typed-constant-definition
constant-identifier ::= identifier
control-character ::= #unsigned-integer | ^character
control-variable ::= variable-identifier
declaration-part ::= {declaration-section}
declaration-section ::= label-declaration-part | constant-definition-part
 | type-definition-part | variable-declaration-part |
 procedure-and-function-declaration-part
digit ::= 0|1|2|3|4|5|6|7|8|9
digit-sequence ::= digit {digit}
empty ::=
empty-statement ::= empty
entire-variable ::= variable-identifier | typed-constant-identifier
expression ::= simple-expression {relational-operator simple-expression}
factor ::= variable | unsigned-constant | (expression) |
 function-designator | set
field-designator ::= record-variable . field-identifier
field-identifier ::= identifier
field-list ::= fixed-part | fixed-part ; variant-part | variant-part
file-identifier ::= identifier
file-identifier-list ::= empty | file-identifier {,file-identifier}
file-type ::= file of type
final-value ::= expression
fixed-part ::= record-section {;record-section}
for-list ::= initial-value to final-value | initial-value downto final-value
for-statement ::= for control-variable := for-list do statement
formal-parameter-section ::= parameter-group | var parameter-group
function-declaration ::= function-heading block;
function-designator ::= function-identifier | function-identifier
 (actual-parameter { , actual-parameter})
function-heading ::= function identifier : result-type; |
 function identifier (formal-parameter-section
 { , formal-parameter-section}) : result-type;
function-identifier ::= identifier
goto-statement ::= goto label
hexdigit ::= digit|A|B|C|D|E|F
hexdigit-sequence ::= hexdigit {hexdigit}
identifier ::= letter{letter-or-digit}
identifier-list ::= identifier{ , identifier}
if-statement ::= if expression then statement { else statement}
index-type ::= simple-type

234 TURBO Pascal Language Manual

TURBO SYNTAX K

indexed-variable ::= array-variable[expression {, expression}]
initial-value ::= expression
inline-list-element ::= unsigned-integer | constant-identifier |
 variable-identifier | location-counter-reference
inline-statement ::= inline inline-list-element { , inline-list-element}
label ::= letter-or-digit {letter-or-digit}
label-declaration-part ::= label label {,label};
letter ::= A|B|C|D|E|F|G|H|I|J|K|L|M|
 N|O|P|Q|R|S|T|U|V|W|X|Y|Z|
 a|b|c|d|e|f|g|h|i|j|k|l|m|
 n|o|p|q|r|s|t|u|v|w|x|y|z|_
letter-or-digit ::= letter | digit
location-counter-reference ::= * | *sign constant
multiplying-operator ::= *|/|div|mod|and|shl|shr
parameter-group ::= identifier-list:type-identifier
pointer-type ::= ^type-identifier
pointer-variable ::= variable
procedure-and-function-declaration-part ::=
 {procedure-or-function-declaration}
procedure-declaration ::= procedure-heading block;
procedure-heading ::= procedure identifier; | procedure identifier
 (formal-parameter-section
 {,formal-parameter-section});
procedure-or-function-declaration ::= procedure-declaration |
 function-declaration
procedure-statement ::= procedure-identifier | procedure-identifier
 (actual-parameter {,actual-parameter})
program-heading ::= empty | program program-identifier
 file-identifier-list
program ::= program-heading block.
program-identifier ::= identifier
record-constant ::= (record-constant-element
 {;record-constant-element})
record-constant-element ::= field-identifier:structured-constant
record-section ::= empty | field-identifier {,field-identifier}:type
record-type ::= record field-list end
record-variable ::= variable
record-variable-list ::= record-variable {,record-variable}
referenced-variable ::= pointer-variable^
relational-operator ::= =|<>|<=|>=|<|>|in
repeat-statement ::= repeat statement {;statement} | until expression
repetitive-statement ::= while-statement | repeat-statement | for-statement
result-type ::= type-identifier
scalar-type ::= (identifier {,identifier})

TURBO SYNTAX 235

K TURBO SYNTAX

scale-factor ::= digit-sequence | sign digit-sequence
set ::= [{set-element}{,set-element}]
set-constant ::= [{set-constant-element}{,set-constant-element}]
set-constant-element ::= constant | constant..constant
set-element ::= expression | expression..expression
set-type ::= set of base-type
sign ::= +|-
signed-factor ::= factor | sign factor
simple-expression ::= term {adding-operator term}
simple-statement ::= assignment-statement | procedure-statement |
 goto-statement | inline-statement | empty-statement
simple-type ::= scalar-type | subrange-type | type-identifier
statement ::= simple-statement | structured-statement
statement-part ::= compound-statement
string ::= {string-element}
string-element ::= text-string | control-character
string-type ::= string [constant]
structured-constant ::= constant | array-constant | record-constant |
 set-constant
structured-constant-definition ::= identifier:type = structured-constant
structured-statement ::= compound-statement | conditional-statement |
 repetitive-statement | with-statement
structured-type ::= unpacked-structured-type |
 packed unpacked-structured-type
subrange-type ::= constant..constant
tag-field ::= empty | field-identifier:
term ::= complemented-factor {multiplying-operator complemented-factor}
text-string ::= '{character}'
type-definition ::= identifier = type
type-definition-part ::= type type-definition {;type-definition};
type-identifier ::= identifier
type ::= simple-type | structured-type | pointer-type
typed-constant-identifier ::= identifier
unpacked-structured-type ::= string-type | array-type |
 record-type | set-type | file-type
unsigned-constant ::= unsigned-number | string | constant-identifier | nil
unsigned-integer ::= digit-sequence | $hexdigit-sequence
unsigned-number ::= unsigned-integer | unsigned-real
unsigned-real ::= digit-sequence.digit-sequence |
 digit-sequence.digit-sequence E scale-factor |
 digit-sequence E scale-factor
untyped-constant-definition ::= identifier = constant
variable ::= entire-variable | component-variable | referenced-variable

236 TURBO Pascal Language Manual

TURBO SYNTAX K

variable-declaration ::= identifier-list:type |
 identifier-list:type absolute constant
variable-declaration-part ::= var variable-declaration
 {;variable-declaration};
variable-identifier ::= identifier
variant ::= empty | case-label-list:(field-list)
variant-part ::= case tag-field type-identifier of variant {;variant}
while-statement ::= while expression do statement
with-statement ::= with record-variable-list do statement

TURBO SYNTAX 237

K TURBO SYNTAX

 Notes:

238 TURBO Pascal Language Manual

ASCII TABLE L

 ----------------+---------------+--------------+--------------
 | | |
 DEC HEX CHAR | DEC HEX CHAR | DEC HEX CHAR | DEC HEX CHAR
 | | |
 ----------------+---------------+--------------+--------------
 | | |
 0 00 ^@ NUL | 32 20 SPC | 64 40 @ | 96 60 `
 1 01 ^A SOH | 33 21 ! | 65 41 A | 97 61 a
 2 02 ^B STX | 34 22 " | 66 42 B | 98 62 b
 3 03 ^C ETX | 35 23 # | 67 43 C | 99 63 c
 4 04 ^D EOT | 36 24 $ | 68 44 D | 100 64 d
 5 05 ^E ENQ | 37 25 % | 69 45 E | 101 65 e
 6 06 ^F ACK | 38 26 & | 70 46 F | 102 66 f
 7 07 ^G BEL | 39 27 ' | 71 47 G | 103 67 g
 8 08 ^H BS | 40 28 (| 72 48 H | 104 68 h
 9 09 ^I HT | 41 29) | 73 49 I | 105 69 i
 10 0A ^J LF | 42 2A * | 74 4A J | 106 6A j
 11 0B ^K VT | 43 2B + | 75 4B K | 107 6B k
 12 0C ^L FF | 44 2C , | 76 4C L | 108 6C l
 13 0D ^M CR | 45 2D - | 77 4D M | 109 6D m
 14 0E ^N SO | 46 2E . | 78 4E N | 110 6E n
 15 0F ^O SI | 47 2F / | 79 4F O | 111 6F o
 16 10 ^P DLE | 48 30 0 | 80 50 P | 112 70 p
 17 11 ^Q DC1 | 49 31 1 | 81 51 Q | 113 71 q
 18 12 ^R DC2 | 50 32 2 | 82 52 R | 114 72 r
 19 13 ^S DC3 | 51 33 3 | 83 53 S | 115 73 s
 20 14 ^T DC4 | 52 34 4 | 84 54 T | 116 74 t
 21 15 ^U NAK | 53 35 5 | 85 55 U | 117 75 u
 22 16 ^V SYN | 54 36 6 | 86 56 V | 118 76 v
 23 17 ^W ETB | 55 37 7 | 87 57 W | 119 77 w
 24 18 ^X CAN | 56 38 8 | 88 58 X | 120 78 x
 25 19 ^Y EM | 57 39 9 | 89 59 Y | 122 79 y
 26 1A ^Z SUB | 58 3A : | 90 5A Z | 122 7A z
 27 1B ^[ESC | 59 3B ; | 91 5B [| 123 7B {
 28 1C ^\ FS | 60 3C < | 92 5C \ | 124 7C |
 29 1D ^] GS | 61 3D = | 93 5D] | 125 7D }
 30 1E ^^ RS | 62 3E > | 94 5E ^ | 126 7E ~
 31 1F ^_ US | 63 3F ? | 95 5F _ | 127 7F DEL
 | | |
 ----------------+---------------+--------------+--------------

ASCII TABLE 239

L ASCII TABLE

 Notes:

240 ASCII TABLE

HELP!!! M

 M. HELP!!!

This appendix lists a number of the most commonly asked questions and their
answers.

Q: How do I use the system?
A: Please read the manual, specifically chapter 1.

Q: Is TURBO an interpreter like UCSD?
A: No, it generates ultra-fast machine code.

Q: Do I need TURBO to run programs developed in TURBO Pascal?
A: No, you can make a .COM or .CMD file.

Q: How many lines of code can the compiler handle.
A: No limit. The object code, however, cannot exceed 64 KB.

Q: How many significant digits does TURBO support in floating point?
A: 11.

Q: Why do I get garbage on the screen when I start the TURBO editor.
A: You have not installed TURBO for your system.

Q: What do I do when I run out of space using the editor?
A: Split your source code (see chapter 17 on include files).

Q: What do I do when I run out of space while compiling?
A: Use the $I directive and/or generate a .COM or .CMD file.

Q: How do I make a .COM or .CMD file?
A: Type O from the main menu, then type C.

Q: What do I do if I run out of space anyway?
A: Use the Chain facility described in sections A.10 and B.1.9.

Q: What do I do when the compiler generates too much code?
A: Read the appendices about compiler switches and .CHN files.

HELP!!! 241

M HELP!!!

Q: Why don't Eof and Eoln work?
A: Set the B compiler directive off: {$B-}.

Q: I don't want Ctrl-C to stop my program, or Ctrl-S to stop screen output.
 How do I prevent that?
A: Set the C compiler directive off: {$C-}.

Q: Why do my recursive procedures not work?
A: Set the A compiler directive off: {$A-} (CP/M-80 only).

242 TURBO Pascal Language Manual

TERMINAL INSTALLATION N

 N. TERMINAL INSTALLATION

Before you use TURBO Pascal, it must be installed to your particular termi-
nal, i.e. provided with information regarding control characters required for
certain functions. This installation is easily performed using the program
TINST which is described in this chapter.

After having made a work-copy, please store your distribution diskette safely
away and work only on the copy.

Now start the installation by typing TINST at your terminal. Select Screen in-
stallation from the main menu. Depending on your version of TURBO Pascal,
the installation proceeds as described in the following two sections.

N.1 IBM PC Display Selection

If you use TURBO Pascal without installation, the default screen set-up will
be used. You may override this default by selecting another screen mode from
this menu:

+--+
| |
| Choose one of the following displays: |
| |
| 0) Default display mode |
| 1) Monochrome display |
| 2) Color display 80x25 |
| 3) Color display 40x25 |
| 4) b/w display 80x25 |
| 5) b/w display 40x25 |
| |
| Which display (enter no. or ^X to exit) _ |
| |
+--+
 Figure N-1: IBM PC Screen Installation Menu

Each time TURBO Pascal runs, the selected mode will be used, and you will
return to the default mode on exit.

TERMINAL INSTALLATION 243

N.2 Non-IBM PC Installation

N.2 Non-IBM PC Installation

A menu listing a number of popular terminals will appear, inviting you to
choose one by entering its number:

+--+
| |
| Choose one of the following terminals: |
| |
| 1) ADDS 20/25/30 15) Lear-Siegler ADM-31 |
| 2) ADDS 40/60 16) Liberty |
| 3) ADDS Viewpoint-1A 17) Morrow MDT-20 |
| 4) ADM 3A 18) Otrona Attache |
| 5) Ampex D80 19) Qume |
| 6) ANSI 20) Soroc IQ-120 |
| 7) Apple/graphics 21) Soroc new models |
| 8) Hazeltine 1500 22) Teletext 3000 |
| 9) Hazeltine Esprit 23) Televideo 912/920/925 |
| 10) IBM PC CCP/M b/w 24) Visual 200 |
| 11) IBM PC CCP/M color 25) Wyse WY-100/200/300 |
| 12) Kaypro 10 26) Zenith |
| 13) Kaypro II and 4 27) None of the above |
| 14) Lear-Siegler ADM-20 28) Delete a definition |
| |
| Which terminal? (Enter no. or ^X to exit): |
| |
+--+
 Figure N-2: Terminal Installation Menu

If your terminal is mentioned, just enter the corresponding number, and the
installation is complete. Before installation is actually performed, you are
asked the question:

 Do you want to modify the definition before installation?

This allows you to modify one or more of the values being installed as descri-
bed in the following. If you do not want to modify the terminal definition, just
type N, and the installation completes by asking you the operating frequency
of your CPU (see last item in this appendix).

If your terminal is not on the menu, however, you must define the required
values yourself. The values can most probably be found in the manual sup-
plied with your terminal.

244 TURBO Pascal Language Manual

Non-IBM PC Installation N.2

Enter the number corresponding to None of the above and answer the
questions one by one as they appear on the screen.

In the following, each command you may install is described in detail. Your
terminal may not support all the commands that can be installed. If so, just
pass the command not needed by typing RETURN in response to the prompt.
If Delete line, Insert line, or Erase to end of line is not installed, these func-
tions will be emulated in software, slowing screen performance somewhat.

Commands may be entered either simply by pressing the appropriate keys or
by entering the decimal or hexadecimal ASCII value of the command. If a
command requires the two characters 'ESCAPE' and '=', you may:

either Press first the Esc key, then the =. The entry will be echoed with
 appropriate labels, i.e. <ESC> =.
or Enter the decimal or hexadecimal values separated by spaces. Hex-
 adecimal values must be preceded by a dollar-sign. Enter
 e.g. 27 61 or $1B 61 or $1B $3D which are all equivalent.

The two methods cannot be mixed, i.e. once you have entered a non-numeric
character, the rest of that command must be defined in that mode, and vice
versa.

A hyphen entered as the very first character is used to delete a command, and
echoes the text Nothing.

Terminal type:

Enter the name of the terminal you are about to install. When you complete
TINST, the values will be stored and the terminal name will appear on the
initial list of terminals. If you later need to re-install TURBO Pascal to this ter-
minal, you can do that by choosing it from the list.

TERMINAL INSTALLATION 245

N.2 Non-IBM PC Installation

Send an initialization string to the terminal?

If you want to initialize your terminal when TURBO Pascal starts (e.g. to
download commands to programmable function keys), you answer Y for yes
to this question. If not, just hit RETURN.

If you answer Y, you may choose between entering the command directly or
defining a file name containing the command string. The latter is a good idea
if the initialization string is long, as e.g. a string to program a number of func-
tion keys would be.

Send a reset string to the terminal?

Here you may define a string to send to the terminal when TURBO Pascal
terminates. The description of the initialization command above applies here.

CURSOR LEAD-IN command:

Cursor Lead-in is a special sequence of characters which tells your terminal
that the following characters are an address on the screen on which the cur-
sor should be placed. When you define this command, you are asked the fol-
lowing supplementary questions:

 CURSOR POSITIONING COMMAND to send between line and
 column:

 Some terminals need a command between the two numbers defining
 the row- and column cursor address.

 CURSOR POSITIONING COMMAND to send after line and co-
 lumn:

 Some terminals need a command after the two numbers defining the
 row- and column cursor address.

 Column first?

 Most terminals require the address on the format: first ROW, then CO-
 LUMN. If this is the case on your terminal, answer N. If your Terminal
 wants COLUMN first, then ROW, then answer Y.

 OFFSET to add to LINE

 Enter the number to add to the LINE (ROW) address.

246 TURBO Pascal Language Manual

Non-IBM PC Installation N.2

 OFFSET to add to COLUMN

 Enter the number to add to the COLUMN address.

 Binary address?

 Most terminals need the cursor address sent in binary form. If that is
 true for your terminal, enter Y. If your terminal expects the cursor ad-
 dress as ASCII digits, enter N. If so, you are asked the supplementary
 question:

 2 or 3 ASCII digits?

 Enter the number of digits in the cursor address for your termi-
 nal.

CLEAR SCREEN command:

Enter the command that will clear the entire contents of your screen, both fo-
reground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?

This is normally the case; if it is not so on your terminal, enter N, and define
the cursor HOME command.

DELETE LINE command:

Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:

Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:

Enter the command that erases the line at the cursor position from the cursor
position through the right end of the line.

TERMINAL INSTALLATION 247

N.2 Non-IBM PC Installation

START OF 'LOW VIDEO' command:

If your terminal supports different video intensities, then define the command
that initiates the dim video here. If this command is defined, the following
question is asked:

 START OF 'NORMAL VIDEO' command:

 Define the command that sets the screen to show characters in
 'normal' video.

Number of rows (lines) on your screen:

Enter the number of horizontal lines on your screen.

Number of columns on your screen:

Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):
Delay after CLEAR, DELETE, and INSERT (0-255 ms):
Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255
ms):

Enter the delay in milliseconds required after the functions specified. RETURN
means 0 (no delay).

Is this definition correct?

If you have made any errors in the definitions, enter N. You will then return to
the terminal selection menu. The installation data you have just entered will
be included in the installation data file and appear on the terminal selection
menu, but installation will not be performed.

When you enter Y in response to this question, you are asked:

Operating frequency of your microprocessor in MHz (for delays):

As the delays specified earlier are depending on the operating frequency of
your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal, and
you return to the outer menu (see section 1.6). Installation data is also saved
in the installation data file and the new terminal will appear on the terminal
selection list when you run TINST in future.

248 TURBO Pascal Language Manual

 SUBJECT INDEX O

 O. SUBJECT INDEX

 A B
 A Note on Control Characters, Backspace, 107
 21 Backup, 16
 A-command, 175, 176 BAK files, 16
 A-compiler directive, 170 Basic Data Types, 157, 187
 Abort command, 34 Basic Symbols, 37
 Abs, 132,206 BDOS, 145
 Absolute Address Functions, Bdos function, 153, 209
 178 Bdos procedure, 153, 208
 Absolute Code, 216 BdosHL function, 153, 209
 Absolute value, 132 BEFORE USE, 5
 Absolute variables, 144, Begin block, 28
 146, 177 Bios function, 154, 209
 Adding operators, 51, 53 Bios procedure 154,208
 Addr, 147, 178, 209 BiosHL function, 154, 209
 Allocating Variables (New), Blanks, 39
 116 Block,121
 Block Commands, 28
 ArcTan, 132, 206 Begin block, 28
 Arithmetic functions, 132, Copy block, 29
 206 Delete block, 29
 Array component, 75 End block, 28
 Array Constants, 90 Hide/display block, 29
 Array Definition, 75 Mark single word, 28
 Array of characters, 109 Move block, 29
 Array Subscript Optimization, Read block from disk, 29
 148 Write block to disk, 30
 Arrays, 75, 161, 190 BlockRead, 112, 207
 Arrays and Records, 165, 193 BlockWrite, 112, 207
 Assign, 94, 207 Boolean, 42
 Assigning a value to a Brackets, 37
 pointer, 181 Byte, 41
 Assignment operator, 37
 Assignment Statement, 55
 Auto Indentation, 35
 Auto tab on/off switch, 31

 SUBJECT INDEX 249

 O SUBJECT INDEX

 C K: stack check, 216
 C-command, 16, 143 174 R: Range checking, 65,
 Call by reference, 122 73, 76, 215
 Call by value, 121 U: user interrupt, 215
 Case statement, 58 V: Type checking, 123,
 Chain, 149, 182, 207 215
 Chain and Execute, 149, 182 W: with statement nesting,
 Char, 42 216
 Character array constants, X: Array optimization,
 90 148, 216
 Character Arrays, 77 Compiler error messages, 221
 Character left, 23 compiler Options, 17, 143,
 Character right, 23 173
 Characters, 73 Compound Statement, 57
 Chr, 135, 206 Concat, 71, 207
 ClrScr, 127, 208 Concatenation, 67
 Close, 96, 207 Concurrent CP/M, 176
 ClrEol, 127, 208 Conditional Statements, 57
 Code segment, 175 Constant Definition Part, 48
 Col(umn) indicator in editor, Constants
 18 typed, 89
 Comment, 37, 39, 45 Control character, 10, 21,
 Common Compiler Directives, 31,32,45
 214 Control character prefix, 34
 Common data, 150, 183 Conversion, 65
 Common features, 173 Copy, 71, 207
 Compilation in Memory, 166 Copy block, 29
 Compilation To Disk, 167 Cos, 132, 206
 Compile Command, 16 Cosine, 132
 Compiler Directive Defaults, CP/M Function Calls, 153
 5 CP/M-80 Compiler Directives,
 Compiler Directives, 46 216
 in include files, 142 CP/M-86 / MS-DOS / PC-DOS
 A: Absolute code, 170, Compiler Directives, 216
 216 CPU stack, 170,195
 B: I/O device selection, CR
 107, 214 as numeric input, 107
 B: input/output mode CrtExit, 128, 208
 selection, 104 CrtInit, 127, 208
 C: control character Cseg, 178
 interpret, 214 Ctrl-A, 23
 I: I/O error handling, Ctrl-A in search strings, 31,
 114,214 32
 I: Include, 15, 141 Ctrl-C, 214, 215
 I: Include files, 214 Ctrl-D, 23

 250 TURBO Pascal Language Manual

 SUBJECT INDEX O

 Ctrl-E, 23 D
 Ctrl-F, 23 D-command, 17, 175
 Ctrl-Q Ctrl-B, 25 Data conversion, 106
 Ctrl-Q Ctrl-C, 25 Data segment, 175
 Ctrl-Q Ctrl-D, 25 Data Structures, 161, 189
 Ctrl-Q Ctrl-E, 25 Data transfer between
 Ctrl-Q Ctrl-K, 25 programs, 150, 183
 Ctrl-Q Ctrl-P, 26 Declaration Part, 47
 Ctrl-Q Ctrl-R, 25 Declared scalar types, 41
 Ctrl-Q Ctrl-S, 25 Defining a Pointer Variable,
 Ctrl-Q Ctrl-X, 25 115
 Ctrl-R, 24 DEL, 107
 Ctrl-S, 23 Delay, 128, 208
 Ctrl-W, 23 Delete, 33, 69, 207
 Ctrl-X, 23, 107 Delete a command, 245
 Ctrl-Z, 24 Delete block, 29
 Cursor Movement, 34 Delete character under cursor,
 Cursor Movement Commands, 21 27
 Character left, 23 Delete commands, 27
 Character right, 23 Delete character under
 Line down, 23 cursor, 27
 Line up, 23 Delete left character, 27
 Page down, 24 Delete line, 27
 Page up, 24 Delete right word, 27
 Scroll down, 24 Delete to end of line, 28
 Scroll up, 23 Delimiters, 39
 To beginning of block, 25 DelLine, 128, 208
 To bottom of screen, 25 Deviations from standard
 To end of block, 25 Pascal, 37, 47 48, 58,
 To end of file, 25 65, 67, 89, 219
 To last position, 26 Digits, 37
 To left on line, 25 Direct memory access, 147,
 To right on line, 25 179
 To top of file, 25 Direct port access, 148, 180
 To top of screen, 25 Directory Command, 17
 Word left, 23 Discriminated unions, 83
 Word right, 23 Disk change, 14
 Disk Files, 162, 190
 Disk-reset, 14
 Dseg, 179
 Dynamic variables, 115, 219

 SUBJECT INDEX 251

 O SUBJECT INDEX

 E Eoln, 106, 107, 207
 E-command, 16, 145 Erase, 96, 207
 Echo, 102, 104 Error Message File Listing,
 of CR, 107,108 203
 Edit Command, 16 Error message translation,
 Edit modes 229
 Insert, 26 Error messages
 Overwrite, 26 Compiler, 221
 Editing commands, 9, 19 I/O, 227
 Character left, 23 run-time, 225
 Character right, 23 Execute, 149, 182, 207
 Line down, 23 eXecute Command, 17
 Line up, 23 Execution error messages, 225
 Page down, 24 Execution in Memory, 167
 Page up, 24 Execution of A Program File,
 Scroll down, 24 168
 Scroll up, 23 Exist function, 96
 To beginning of block, 25 Exp, 133, 206
 To bottom of screen, 25 Exponential, 133
 To end of block, 25 Extended File Size, 200
 To end of file, 25 Extensions, 1
 To last position, 26 External procedures, 162,
 To left on line, 25 191
 To right on line, 25 External Subprograms, 149,
 To top of file, 25 181
 To top of screen, 25
 Word left, 23
 Word right, 23
 Editing of input, 107
 Editor, 18
 Col, 18
 File name, 19
 Indent, 19
 Insert, 19
 Line, 18
 Element (of set), 85
 Else statement, 58
 Empty Statement, 56
 End Address, 145
 End block, 28
 End Edit, 35
 End edit command, 30
 End of line, 39
 EOF, 97, 106, 107, 113, 207
 EOF with text files, 101

 252 TURBO Pascal Language Manual

 SUBJECT INDEX O

 F G
 F-command, 145, 176 Get and Put, 219
 False, 42 GetMem, 119, 208
 Field constants, 92 Goto Statement, 56, 220
 Field list, 79 GotoXY, 128, 208
 Fields, 79
 File handling routines, 207
 File identifier, 93 H
 File Interface Blocks, l59 H-command, 143, 174
 198, 202 Halt procedure, 208
 File name indicator in editor, Heap, 116, 170, 175, 194
 19 Heap Control Procedures and
 File names, 14 Functions, 208
 File of Byte, 200 HeapPtr, 168, 170, 194
 File parameters, 122 Hi, 136
 File pointer, 93 Hi function, 209
 File Standard Functions, 97 Hide/display block, 29
 File type, 92, 93 Highlighting, 13
 File Type Definition, 93 Home position, 128
 FilePos, 97, 113, 207
 Files On The Distribution
 Disk, 6 I
 FileSize, 97, 113, 207 I/O, 106
 FileSize I/O checking, 114
 with text files, 101 I/O error handling, 114
 FillChar, 129, 208 I/O error messages, 227
 Find, 31 I/O mode selection, 104
 Find and replace, 32 I/O Procedures and Functions, 205
 Find Runtime Error, 145, 176 I/O to textfiles, 106
 Flush, 95, 200 IBM PC Display Selection, 243
 Flush IBM PC Screen Installation, 8
 with text files, 101 Identifiers, 43
 For statement, 60 If statement, 57
 Foreign languages, 229 In-line Machine Code, 152,
 Forward References, 138 184
 Frac, 133, 206 Include compiler directive,
 Fractional part, 133 15
 Free memory, 175, 176 Indent indicator in editor,
 Free Unions, 83 19
 Function Calls, 196, 201 Indentation, 31
 Function Declaration, 130 in this manual, 4
 Function Designators, 54 Initialized variables, 89
 Function Results, 165, 194 Input without echo, 102, 104
 Functions, 130

 SUBJECT INDEX 253

 O SUBJECT INDEX

 Input L
 characters, 106 L-command, 14
 editing, 107 Label Declaration Part, 48
 numeric values, 107 Labels, 56
 strings, 107 Large programs, 141
 Insert, 69, 207 Length, 72, 207
 Insert and Delete Commands, Length of strings, 67
 26 Letters, 37
 Insert commands, 27 Limitations on sets, 85
 Insert indicator in editor, Line break, 31
 19 Line down, 23
 Insert line, 27 Line indicator in editor, 18
 Insert mode on/off switch, 26 Line Restore, 35
 InsLine, 128, 208 Line up, 23
 Installation, 8 Ln, 133, 206
 Installation of Editing Lo, 136, 209
 Commands, 9 Local variables as
 Int, 133, 206 var-parameters, 219
 Integer, 41, 43 Location counter reference,
 Integer overflow, 41 152, 185
 Integer part, 133 Logarithm, 133
 Internal Data Formats, 157, Logged Drive Selection, 14
 187 Logical Devices, 102
 Interrupt Handling, 156, 186 LongFilePos, 200
 Intersection, 85 LongFileSize, 200
 Intr, 186 LongSeek, 200
 Introduction, 1 Lower case, 43
 lOresult, 114, 209 LowVideo, 129, 208

 K
 KeyPressed, 136, 209

 254 TURBO Pascal Language Manual

 SUBJECT INDEX O

 M Miscellaneous Procedures and
 M-command, 15, 143, 174 Functions, 208
 Main File Selection, 15 Move, 129, 208
 Margins in this manual, 4 Move block, 29
 Mark and Release, 116 Multi-user system, 95
 Mark single word, 28, 34 Multidimensional Array
 Maximum Free Dynamic Memory, Constants, 91
 176 Multidimensional Arrays, 76
 Mem Array, 147, 179 Multiplying operators, 51,
 MemAvail, 117, 148, 180, 52
 208
 Member (of set), 85
 Memory / Com file / cHn-file, N
 143, 174 Natural logarithm, 133
 Memory access, 147, 179 Nesting of With statements,
 Memory Management, 166 81, 148
 Memory Maps, 166 New, 116, 208
 Menu Nil, 116
 C-command, 16 Non-IBM PC Screen
 D-command, 17 Installation, 9, 244
 E-command, 16 NormVideo, 129, 208
 L-command, 14 Not, 51, 52
 M-command, 15 Numbers, 43
 0-command, 143, 173 Numeric input, 107
 Q-command, 17
 R-command, 16
 S-command, 16 O
 W-command, 14 O-command, 143, 173, 175
 X-command, 17 Obtaining the value of a
 Minimum Code Segment Size, pointer, 181
 175 Odd, 134, 206
 Minimum Data Segment Size, Ofs, 178
 175 Oops, 31
 Minimum Free Dynamic Memory, Operations on Files, 94, 200
 175 Operations on Text Files, 100
 Miscellaneous editing commands Operator precedence, 51
 Abort command, 34 Operators, 51
 Auto tab on/off, 31 Options, 143, 173
 Control character prefix,
 34
 End edit, 30
 Find, 31
 Find and replace, 32
 Repeat last find, 33
 Restore line, 31
 Tab, 30
 SUBJECT INDEX 255

 O SUBJECT INDEX

 Options menu Procedure and Function
 C-command, 143, 174 Declaration Part, 50
 D-command, 175 Procedure Declaration, 125
 E-command, 145 Procedure Statement, 56, 121
 F-command, 145, 176 Procedures, 125
 H-command, 143, 174 Assign, 94
 I-command, 175, 176 Close, 96
 M-command, 143, 174 Delete, 69
 O-command, 175 Erase, 96
 S-command, 144 Flush, 95
 Ord, 135, 149, 180, 206, 208 Insert, 69
 Ordinal value, 135 Read, 95
 Overflow recursive, 125
 integer, 41 Rename, 96
 real, 42 Reset, 94
 Overwrite/insert, 26 Rewrite, 94
 Seek, 95
 Str, 70
 P Val, 70
 Packed Variables, 220 Write, 95
 Page down, 24 Program Heading, 47
 Page Procedure, 220 Program lines, 39
 Page up, 24 Ptr, 149, 180, 208
 Paragraph, 175, 176
 Parameters, 121, 162, 191
 value, 121 Q
 variable, 122, 123 Q-command, 17
 Pointer Related Items, 148, Quit Command, 17
 180
 Pointer symbol, 115
 Pointer types, 92 R
 Pointer Values, 180 R-command, 16
 Pointers, 115, 160, 164, Random, 136, 208
 189, 193 Random access files, 162,
 Pointers and Integers, 149 199,
 Port access, 148, 180 Random(Num), 136
 Port Array, 148, 180 Randomize, 129, 208
 Pos, 72, 207 Range Checking, 65
 Position Read block from disk, 29
 with text files, 101 Read Procedure, 95, 106,
 Pred, 134, 206 132, 205
 Predecessor, 134 Read without echo, 102, 104
 Predefined Arrays, 77, 147, Readln Procedure, 108, 132,
 179 205
 Procedural Parameters, 220 Real overflow, 42

 256 TURBO Pascal Language Manual

 SUBJECT INDEX O

 Reals, 42, 44, 157, 163, S
 188, 193 S-command, 16, 144
 Record Constants, 91 Save Command, 16
 Record Definition, 79 Scalar functions, 134, 206
 Record type, 79 Scalar Type, 63
 Records, 161, 190 Scalars, 157, 163, 187,
 RecurPtr, 168,170 193
 Recursion, 125, 170, 216, Scope, 125
 219 Scope
 Recursion stack, 170 of identifiers, 49
 Recursion of labels, 56
 Local variables as Screen Related Procedures,
 var-parameters, 219 208
 Relational operators, 37, Scroll down, 24
 51, 53 Scroll up, 23
 Relative complement, 85 Search, 31
 Relaxations on Parameter Type Seek, 95, 113, 207
 Checking, 123 with text files, 101
 Release procedure, 208 Seg, 178
 Rename, 96 Set, 158, 164, 189, 193
 Rename procedure, 207 Set Assignments, 88
 Repeat last find, 33 Set Constants, 92
 Repeat Statement, 61 Set Constructors, 86
 Repetitive Statements, 59 Set Expressions, 86
 Reserved Words, 37 Set operations, 85
 Reset, 94, 207 Set Operators, 87
 Restore line, 31 Set Type Definition, 85
 RETURN, 107 Shared data, 150, 183
 Retype, 65 Simple Statements, 55
 Rewrite, 94, 207 Sin, 133, 206
 Root program, 175 Sine, 133
 Round, 135, 206 SizeOf, 137, 209
 RUBOUT, 107 Space Allocation, 119
 Run Command, 16 Special symbols, 37
 Run-time error messages, 225 Sqr, 134, 206
 Run-time range checking, 65, Sqrt, 134, 206
 73, 76 Square, 134
 Square root, 134
 Sseg, 179
 Stack, 175
 StackPtr, 168, 170
 Standard Files, 103

 SUBJECT INDEX 257

 O SUBJECT INDEX

 Standard Functions, 132 Standard Procedures, 127
 Abs, 132 Bdos, 153
 Addr, 147, 178 Bios, 154
 ArdTan, 132 Chain, 149, 182
 Bdos, 153 ClrEol, 127
 Bios, 154 ClrScr, 127
 BiosHL, 154 CrtExit, 128
 Chr, 135 CrtInit, 127
 Cos,132 Delay, 128
 Cseg, 178 DelLine, 128
 Dseg, 179 Execute, 149, 182
 EOF, 113 FillChar, 129
 Exp, 133 GotoXY, 128
 FilePos, 113 InsLine, 128
 FileSize, 113 Intr, 186
 Frac, 133 LowVideo, 129
 Hi, 136 Move, 129
 Int, 133 New, 116
 IOresult, 114 NormVideo, 129
 KeyPressed, 136 Randomize, 129
 Ln, 133 Read, 106
 Lo, 136 Seek, 113
 MemAvail, 117 Standard scalar types, 41
 Odd, 134 Start Address, 144
 Ofs, 178 Starting TURBO Pascal, 7
 Ord, 135, 149, 180 Statement Part, 50, 55
 Pred, 134 Statement-separator, 55
 Ptr, 149, 180 Static variables, 115
 Random, 136 Str, 70, 207
 Random(Num), 136 String Assignment, 68
 Round, 135 String concatenation, 67
 Seg, 178 String Expressions, 67
 Sin, 133 String Functions, 71
 SizeOf, 137 String indexing, 73
 Sqr, 134 String manipulation, 67
 Sqrt, 134 String Procedures, 69
 Sseg, 179 String Procedures and
 Succ, 134 Functions, 207
 Swap, 137 String Type Definition, 67
 Trunc, 135 Strings, 44, 158, 164,
 UpCase, 137 188, 193
 Standard Identifiers, 38, Strings and Characters, 73
 146, 177, 196, 201 Structured Statements, 57
 Structured Typed Constants,
 90

 258 TURBO Pascal Language Manual

 SUBJECT INDEX O

 Sub-program, 121 Untyped Variable Parameters,
 Subrange, 59 123
 Subrange Type, 64 UpCase, 137, 209
 Succ, 134, 206 Upper case, 43
 Successor, 134 Upper left corner of screen,
 Swap, 137, 209 128
 User Written I/O Drivers,
 155, 196, 201
 T Using Files, 97
 Tab, 30, 35 Using Pointers, 117
 Tag field, 82
 Terminal installation, 9
 Text File Input and Output, V
 106 Val, 70, 207
 Text Files, 100, 162, 191 Value Parameters, 121, 163,
 The empty set, 86 192
 To beginning of block, 25 Variable Declaration Part, 49,
 To bottom of screen, 25 219
 To end of block, 25 Variable Parameters, 122,
 To end of file, 25 123, 163, 192
 To last position, 26 Variables, 49, 115
 To left on line, 25 absolute, 146, 177
 To right on line, 25 Variant Records, 82
 To top of file, 25
 To top of screen, 25
 TPA, 145 W
 Trailing blanks, 25, 34 W-command, 14
 Transfer functions, 135, 206 While statement, 61
 Translation of error messages, With Statement, 81, 148, 180
 229 Word left, 23
 True, 42 Word right, 23
 Trunc, 135, 206 WordStar compatibility, 9
 Type checking, 123 Work File Selection, 14
 Type Conversion, 65 Write, 95
 Type Definition Part, 49 Write block to disk, 30
 Typed constants, 89 Write Parameters, 109
 Write Procedure, 109, 132,
 205
 U Writeln Procedure, 111, 132,
 Unary minus, 51 205
 Unclusion, 87
 Unions, 83, 85
 Unstructured Typed Constants, X
 89 X-command, 17
 Untyped Files, 112

 SUBJECT INDEX 259

•

