Chapter 10

Generating Functions

10.1 Generating Functions for Discrete Distribu-
tions

So far we have considered in detail only the two most important attributes of a
random variable, namely, the mean and the variance. We have seen how these
attributes enter into the fundamental limit theorems of probability, as well as into
all sorts of practical calculations. We have seen that the mean and variance of
a random variable contain important information about the random variable, or,
more precisely, about the distribution function of that variable. Now we shall see
that the mean and variance do not contain all the available information about the
density function of a random variable. To begin with, it is easy to give examples of
different distribution functions which have the same mean and the same variance.
For instance, suppose X and Y are random variables, with distributions

(1 2 3 45 6
PX=\0 174 172 0 0 1/4)°

(1 2 3 4 5 6
by = <1/4 00 1/2 1/4 0) '
Then with these choices, we have E(X) = E(Y) =7/2and V(X)) =V (Y) =9/4,
and yet certainly px and py are quite different density functions.
This raises a question: If X is a random variable with range {z1,z2,...} of at
most countable size, and distribution function p = px, and if we know its mean

p = E(X) and its variance 02 = V(X), then what else do we need to know to
determine p completely?

Moments

A nice answer to this question, at least in the case that X has finite range, can be
given in terms of the moments of X, which are numbers defined as follows:
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tr = kth moment of X
= E(X*)

= > @) play)

provided the sum converges. Here p(z;) = P(X = ;).

In terms of these moments, the mean p and variance o2 of X are given simply
by

va

2 2 — B3,

g

so that a knowledge of the first two moments of X gives us its mean and variance.
But a knowledge of all the moments of X determines its distribution function p
completely.

Moment Generating Functions

To see how this comes about, we introduce a new variable ¢, and define a function
g(t) as follows:

g(t) = B()
_ i frt”
N k!
k=0
= XFtk
k=0

oo
= Z etljp(:vj) .
j=1

We call g(t) the moment generating function for X, and think of it as a convenient
bookkeeping device for describing the moments of X. Indeed, if we differentiate
g(t) n times and then set t = 0, we get pu,:

dn
——q(t) = ¢"™(0)
dtm =0
. i k!uktk_n
B — ) k!
= (k—n)k! -
= Hn .

It is easy to calculate the moment generating function for simple examples.



10.1. DISCRETE DISTRIBUTIONS 367

Examples

Example 10.1 Suppose X hasrange {1,2,3,...,n} andpx(j) =1/nfor1 <j<n
(uniform distribution). Then

o) = et

j=1
1
—_ —(et—|—62t+----‘r€"t)
n
et(e™ —1)
n(et — 1)

If we use the expression on the right-hand side of the second line above, then it is
easy to see that

1 +1
p = g’(O):H(1+2+3+...+n):”2 ’
1 +1)(2n+1
pa = 9”(0):5(1+4+9+”‘+”2):u6n>,
and that g = p; = (n+1)/2 and 02 = py — p2 = (n2 —1)/12. -

Example 10.2 Suppose now that X has range {0,1,2,3,...,n} and px(j) =
(?)qu"_j for 0 < j < n (binomial distribution). Then

n . /n i
o) = (e
=0 M
n n i
= Z ) (pe')ig™
=0 \J
= (pe' +q)" .
Note that
p=g'0) = n(pe'+q)" 'pe’|,_, =np,
p2=g"(0) = n(n—1)p" +np,
so that = puy = np, and 02 = s — p? = np(1 — p), as expected. O

Example 10.3 Suppose X has range {1,2,3,...} and px(j) = ¢’~!p for all j
(geometric distribution). Then

g(t) = Y g p

1—get’
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Here
¢
, pe 1
M1 = g (O) = =~
(1 - qet)2 t—g P
t 2t
" pe’ + pge l+gq
pe = g'(0) = = :
(1- qet)3 t=0 p?
u=p1=1/p,and 02 = s — 3 = q/p?, as computed in Example 6.26. O

Example 10.4 Let X have range {0,1,2,3,...} and let px(j) = e~ *\ /4! for all j
(Poisson distribution with mean ). Then

g(t) _ Zetje_?‘)\j

|
= 7
oo )\ t ]
— e Z ( ° )
= 7
— e—)\e)\et — e)\(et—l) )
Then
o= g'(0) =MDt =N
Lo = gl/(o) — ek(et—l)()\Qth +)\€t)’ — )\2 +)\ ,

p=p1 =X\ and 02 = py — pu? = \.
The variance of the Poisson distribution is easier to obtain in this way than
directly from the definition (as was done in Exercise 6.2.30). O

Moment Problem

Using the moment generating function, we can now show, at least in the case of
a discrete random variable with finite range, that its distribution function is com-
pletely determined by its moments.

Theorem 10.1 Let X be a discrete random variable with finite range

{xlaan"'7xn} 3

and moments p, = E(X*). Then the moment series

— fut”
g(t) = Z e
k=0

converges for all ¢ to an infinitely differentiable function g(t).

Proof. We know that
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If we set M = max |z;|, then we have
el <> Jag ()
j=1
< MR pay) =M".
j=1
Hence, for all N we have

>

k=0

k N k
Pt ‘ < Z (M\TD < Ml

k! k

k=0
which shows that the moment series converges for all ¢. Since it is a power series,
we know that its sum is infinitely differentiable.

This shows that the s determine g(t). Conversely, since ux = g™*)(0), we see
that g(t) determines the . O

Theorem 10.2 Let X be a discrete random variable with finite range {1, za, ...,
Xy }, distribution function p, and moment generating function g. Then g is uniquely
determined by p, and conversely.

Proof. We know that p determines g, since
n
g(t) =>_ eip(a;) .
j=1

In this formula, we set a; = p(x;) and, after choosing n convenient distinct values
t; of t, we set b; = g(t;). Then we have

n
bi = E et””jaj s
j=1

or, in matrix notation
B =MA .
Here B = (b;) and A = (a;) are column n-vectors, and M = (e"%7) is an n x n
matrix.
We can solve this matrix equation for A:

A=MB,

provided only that the matrix M is invertible (i.e., provided that the determinant
of M is different from 0). We can always arrange for this by choosing the values
t; =1 — 1, since then the determinant of M is the Vandermonde determinant

1 1 1 e 1
et;cl etﬂcg etacg etwn
det e2tx1 e2t3:2 62t$3 .. thxn
e(n—l)trl e(n—l)tmg e(n—l)txg L e(n—l)tm”
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of the e, with value J[, ,(e”* —e®/). This determinant is always different from 0
if the x; are distinct. o

If we delete the hypothesis that X have finite range in the above theorem, then

the conclusion is no longer necessarily true.

Ordinary Generating Functions

In the special but important case where the z; are all nonnegative integers, z; = j,
we can prove this theorem in a simpler way.

t)=>ep(j)
=0

and we see that g(t) is a polynomial in e'. If we write 2 = ¢!, and define the function

h by
n .
2)=>_2p(j),
3=0
then h(z) is a polynomial in z containing the same information as ¢(t), and in fact

h(z) = g(logz),
g(t) = h(e).

The function h(z) is often called the ordinary generating function for X. Note that
h(1) =g(0) =1, A’ (1) = ¢’(0) = p1, and A"(1) = ¢"(0) — ¢’'(0) = p2 — p1. It follows
from all this that if we know g¢(¢), then we know h(z), and if we know h(z), then
we can find the p(j) by Taylor’s formula:

In this case, we have

p(j) = coefficient of 27 in h(z)
hU)(0)
it

For example, suppose we know that the moments of a certain discrete random
variable X are given by

Ho =

+ —, fork>1.

4

L,
1 2k
Pe =5

Then the moment generating function g of X is
— Hit
gt) = > —k
k=0

> 1 o= (2t)F
S atix

k=1

1
2
1
2

et+—e

u>|>—~
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This is a polynomial in z = e?, and

1 1 1

Hence, X must have range {0,1,2}, and p must have values {1/4,1/2,1/4}.

Properties

Both the moment generating function g and the ordinary generating function h have
many properties useful in the study of random variables, of which we can consider
only a few here. In particular, if X is any discrete random variable and Y = X +a,
then

gy(t) = BE(")
E(et(X+a))
— etaE(etX)

= etagX (t) )
while if Y = bX, then

E(etY)
_ E(eth)
= gx(bt) .

gy (1)

In particular, if

X —
X*: I’L’
g

t/o t
g+ (t) =€ ut/ gx (;) .

If X and Y are independent random variables and Z = X + Y is their sum,
with px, py, and pz the associated distribution functions, then we have seen in
Chapter 7 that pz is the convolution of px and py, and we know that convolution
involves a rather complicated calculation. But for the generating functions we have
instead the simple relations

then (see Exercise 11)

9z(t) = gx(t)gv (1),
hz(z) = hx(Z)hy(z) s
that is, gz is simply the product of gx and gy, and similarly for hz.

To see this, first note that if X and Y are independent, then e** and et¥ are

independent (see Exercise 5.2.38), and hence

E(etXetY) _ E(etX)E(etY) )
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It follows that

gz(t) — E(etZ> — E(et(X+Y))
VE(e™)

and, replacing t by log z, we also get

hz(z) = hx(z)hy(z) .

Example 10.5 If X and Y are independent discrete random variables with range
{0,1,2,...,n} and binomial distribution

px(j) =py(j) = (?)qu”j ,
and if Z =X +Y, then we know (cf. Section 7.1) that the range of X is
{0,1,2,...,2n}
and X has binomial distribution
p2) = o)) = ()i

Here we can easily verify this result by using generating functions. We know that

i e’ (T.L>pj ¢
<\

gx(t) = gv (1) ‘
= (pe'+a)",
and
hx(z) =hy(2) = (pz +q)" .

Hence, we have
9z(t) = gx gy (t) = (pe' + q)*" ,

or, what is the same,

hz(z) = hx(2)hy(z) = (pz+¢)*"
2L 2n J2n—j
= JZ::O <j )(pz) @,

from which we can see that the coefficient of 27 is just pz(j) = (2;")qu2”_j. O
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Example 10.6 If X and Y are independent discrete random variables with the
non-negative integers {0,1,2,3,...} as range, and with geometric distribution func-

tion
px(j) =py () =dp,
then
gx(t) = gy(t) = —2—
1—get’
and if Z = X 4+ Y, then
gz(t) = gx(t)gy(t)

N
1 — 2get + ¢?e?t

If we replace et by z, we get

p2

(1-q2)?

oo

= p* Y (k+1)g*a",
k=0

hz(Z)

and we can read off the values of pz(j) as the coefficient of 2z’ in this expansion
for h(z), even though h(z) is not a polynomial in this case. The distribution pyz is
a negative binomial distribution (see Section 5.1). O

Here is a more interesting example of the power and scope of the method of
generating functions.

Heads or Tails

Example 10.7 In the coin-tossing game discussed in Example 1.4, we now consider
the question “When is Peter first in the lead?”
Let X describe the outcome of the kth trial in the game

Y, — +1, if kth toss is heads,
BT =1, if kth toss is tails.

9

Then the X are independent random variables describing a Bernoulli process. Let
So =0, and, for n > 1, let

Sn=X1+Xo+---+X, .

Then S,, describes Peter’s fortune after n trials, and Peter is first in the lead after
ntrials if S, <O0for 1<k <nand S, =1.

Now this can happen when n = 1, in which case S; = X; = 1, or when n > 1,
in which case S; = X7 = —1. In the latter case, S = 0 for k = n — 1, and perhaps
for other k£ between 1 and n. Let m be the least such value of k; then S,, = 0 and
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S < 0 for 1 < k < m. In this case Peter loses on the first trial, regains his initial
position in the next m — 1 trials, and gains the lead in the next n — m trials.

Let p be the probability that the coin comes up heads, and let ¢ = 1 — p. Let
7, be the probability that Peter is first in the lead after n trials. Then from the
discussion above, we see that

r, = 0, if n even,
r = p (= probability of heads in a single toss),
rn = q(rirn—2 +73rp_a+--+rp_ori), ifn>1, nodd.

Now let T describe the time (that is, the number of trials) required for Peter to
take the lead. Then T is a random variable, and since P(T = n) = ry,, r is the
distribution function for T

We introduce the generating function hr(z) for T

o0
hr(z) = Z rpz" .
n=0
Then, by using the relations above, we can verify the relation
hr(2) = pz + qz(hr(2))? .
If we solve this quadratic equation for hp(z), we get

11 —4pgz? 2pz
2qz 1F /1 — 4pgz2 .

Of these two solutions, we want the one that has a convergent power series in z

hT(Z)

(i.e., that is finite for z = 0). Hence we choose
h(2) 1—+/1—4pgz? 2pz
T Z) = = .
2qz 1+ /1 — 4pgz?
Now we can ask: What is the probability that Peter is ever in the lead? This
probability is given by (see Exercise 10)

S = hp(1) = L=V 1= 4pa
n=0

2q
_ 1-lp—d
2q
_ [ p/a ifp<q,
L ifp>gq,

so that Peter is sure to be in the lead eventually if p > q.
How long will it take? That is, what is the expected value of T'? This value is
given by

o JY/—a), fp>q,
B = () = { V00 =
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This says that if p > ¢, then Peter can expect to be in the lead by about 1/(p — q)
trials, but if p = g, he can expect to wait a long time.

A related problem, known as the Gambler’s Ruin problem, is studied in Exer-
cise 23 and in Section 12.2. O

Exercises

1 Find the generating functions, both ordinary h(z) and moment g(t), for the
following discrete probability distributions.

(a
(b

The distribution describing a fair coin.
The distribution describing a fair die.
(¢) The distribution describing a die that always comes up 3.

(d) The uniform distribution on the set {n,n+ 1,n+2,...,n+ k}.
e

f

)
)
)
)
(e) The binomial distribution on {n,n+ 1,n+2,...,n+ k}.
(f) The geometric distribution on {0,1,2,...,} with p(j) = 2/37+1.
2 For each of the distributions (a) through (d) of Exercise 1 calculate the first
and second moments, 1 and po, directly from their definition, and verify that

h(1) =1, B'(1) = p1, and A"(1) = p2 — pa.
3 Let p be a probability distribution on {0, 1,2} with moments 1 = 1, uo = 3/2.
(a) Find its ordinary generating function h(z).
(b
(c
(d) Using (a), find po, p1, and po.

Using (a), find its moment generating function.
Using (b), find its first six moments.

)
)
)
)

4 In Exercise 3, the probability distribution is completely determined by its first
two moments. Show that this is always true for any probability distribution
on {0,1,2}. Hint: Given py and pus, find h(z) as in Exercise 3 and use h(z)
to determine p.

5 Let p and p’ be the two distributions
(1 23 4 5
P=\1/3 0 0 2/3 0/

, (1 2 3 4 5
P=X0 2/3 0 0 1/3)"
(a) Show that p and p’ have the same first and second moments, but not the
same third and fourth moments.

(b) Find the ordinary and moment generating functions for p and p'.
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6 Let p be the probability distribution

(0 1 2
P=\o 1/3 2/3)
and let p, = p*p*---*p be the n-fold convolution of p with itself.

(a) Find po by direct calculation (see Definition 7.1).

(b) Find the ordinary generating functions h(z) and ho(z) for p and pe, and
verify that ha(2) = (h(2))%.

(¢) Find h,(z) from h(z).

(d) Find the first two moments, and hence the mean and variance, of p,
from h,(z). Verify that the mean of p,, is n times the mean of p.

(e) Find those integers j for which p,(j) > 0 from h,(2).

7 Let X be a discrete random variable with values in {0,1,2,...,n} and moment
generating function ¢(¢). Find, in terms of ¢(t), the generating functions for

8 Let X;, Xo, ..., X,, be an independent trials process, with values in {0, 1}
and mean p = 1/3. Find the ordinary and moment generating functions for
the distribution of

(a) S1 = X1. Hint: First find X; explicitly.
(b) So =X + Xo.

() Sn=X1+Xo+ + X

(d) A, = Sp/n.

() S = (Sn —np)/Vno®.

9 Let X and Y be random variables with values in {1,2,3,4,5,6} with distri-
bution functions px and py given by

px(j) = a;,
py(j) = b;.
(a) Find the ordinary generating functions hx (z) and hy (z) for these distri-
butions.

(b) Find the ordinary generating function hy(z) for the distribution Z =
X+Y.
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(c¢) Show that hz(z) cannot ever have the form

22423 4y 12

ha(z) = 11

Hint: hx and hy must have at least one nonzero root, but hz(z) in the form
given has no nonzero real roots.
It follows from this observation that there is no way to load two dice so that

the probability that a given sum will turn up when they are tossed is the same
for all sums (i.e., that all outcomes are equally likely).

10 Show that if

hz) 1— /1 — 4pqz?

- ?

2qz
then y
_J plg, ifp<q,
h(l)_{ 1, ifp>gq,
and

h(1) =
0, if p=gq.

11 Show that if X is a random variable with mean p and variance o?, and if
X* = (X — p)/o is the standardized version of X, then

t

gx~(t) = e*ut/agx <_> .

g

10.2 Branching Processes

Historical Background

In this section we apply the theory of generating functions to the study of an
important chance process called a branching process.

Until recently it was thought that the theory of branching processes originated
with the following problem posed by Francis Galton in the Educational Times in
1873.1

Problem 4001: A large nation, of whom we will only concern ourselves
with the adult males, NV in number, and who each bear separate sur-
names, colonise a district. Their law of population is such that, in each
generation, ag per cent of the adult males have no male children who
reach adult life; a; have one such male child; as have two; and so on up
to as who have five.

Find (1) what proportion of the surnames will have become extinct
after r generations; and (2) how many instances there will be of the
same surname being held by m persons.

1D. G. Kendall, “Branching Processes Since 1873,” Journal of London Mathematics Society,
vol. 41 (1966), p. 386.
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The first attempt at a solution was given by Reverend H. W. Watson. Because
of a mistake in algebra, he incorrectly concluded that a family name would always
die out with probability 1. However, the methods that he employed to solve the
problems were, and still are, the basis for obtaining the correct solution.

Heyde and Seneta discovered an earlier communication by Bienaymé (1845) that
anticipated Galton and Watson by 28 years. Bienaymé showed, in fact, that he was
aware of the correct solution to Galton’s problem. Heyde and Seneta in their book
I. J. Bienaymé: Statistical Theory Anticipated,? give the following translation from
Bienaymé’s paper:

If ... the mean of the number of male children who replace the number
of males of the preceding generation were less than unity, it would be
easily realized that families are dying out due to the disappearance of
the members of which they are composed. However, the analysis shows
further that when this mean is equal to unity families tend to disappear,
although less rapidly ....

The analysis also shows clearly that if the mean ratio is greater than
unity, the probability of the extinction of families with the passing of
time no longer reduces to certainty. It only approaches a finite limit,
which is fairly simple to calculate and which has the singular charac-
teristic of being given by one of the roots of the equation (in which
the number of generations is made infinite) which is not relevant to the
question when the mean ratio is less than unity.

Although Bienaymé does not give his reasoning for these results, he did indicate
that he intended to publish a special paper on the problem. The paper was never
written, or at least has never been found. In his communication Bienaymé indicated
that he was motivated by the same problem that occurred to Galton. The opening
paragraph of his paper as translated by Heyde and Seneta says,

A great deal of consideration has been given to the possible multipli-
cation of the numbers of mankind; and recently various very curious
observations have been published on the fate which allegedly hangs over
the aristocrary and middle classes; the families of famous men, etc. This
fate, it is alleged, will inevitably bring about the disappearance of the

so-called families fermées.*

A much more extensive discussion of the history of branching processes may be
found in two papers by David G. Kendall.?

2C. C. Heyde and E. Seneta, I. J. Bienaymé: Statistical Theory Anticipated (New York:
Springer Verlag, 1977).

3ibid., pp. 117-118.

4ibid., p. 118.

5D. G. Kendall, “Branching Processes Since 1873,” pp. 385-406; and “The Genealogy of Ge-
nealogy: Branching Processes Before (and After) 1873,” Bulletin London Mathematics Society,
vol. 7 (1975), pp. 225-253.



10.2. BRANCHING PROCESSES 379
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Figure 10.1: Tree diagram for Example 10.8.

Branching processes have served not only as crude models for population growth
but also as models for certain physical processes such as chemical and nuclear chain
reactions.

Problem of Extinction

We turn now to the first problem posed by Galton (i.e., the problem of finding the
probability of extinction for a branching process). We start in the Oth generation
with 1 male parent. In the first generation we shall have 0, 1, 2, 3, ... male
offspring with probabilities pg, p1, p2, p3, .... If in the first generation there are k
offspring, then in the second generation there will be X1 + X5 + - - - + X}, offspring,
where X1, Xo, ..., X} are independent random variables, each with the common
distribution pg, p1, p2, .... This description enables us to construct a tree, and a
tree measure, for any number of generations.

Examples

Example 10.8 Assume that po = 1/2, p1 = 1/4, and p; = 1/4. Then the tree
measure for the first two generations is shown in Figure 10.1.

Note that we use the theory of sums of independent random variables to assign
branch probabilities. For example, if there are two offspring in the first generation,
the probability that there will be two in the second generation is

P(X1+X,=2) = pop2+pip1 + papo
L1, 11, 11 5
2 4 44 42 16°
We now study the probability that our process dies out (i.e., that at some
generation there are no offspring).
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Let d,, be the probability that the process dies out by the mth generation. Of
course, dg = 0. In our example, dy = 1/2 and do =1/2+1/84+1/16 = 11/16 (see
Figure 10.1). Note that we must add the probabilities for all paths that lead to 0
by the mth generation. It is clear from the definition that

O0=dp<dy <dp <---<1.

Hence, d,, converges to a limit d, 0 < d < 1, and d is the probability that the
process will ultimately die out. It is this value that we wish to determine. We
begin by expressing the value d,, in terms of all possible outcomes on the first
generation. If there are j offspring in the first generation, then to die out by the
mth generation, each of these lines must die out in m — 1 generations. Since they
proceed independently, this probability is (d,,_1)?. Therefore

i = Po + P1dm—1 + p2(dm—1)> + p3(dm—1)* + -+ . (10.1)
Let h(z) be the ordinary generating function for the p;:
h(z) =po +piz+p22+--- .
Using this generating function, we can rewrite Equation 10.1 in the form

e = h(dpm_1) - (10.2)

Since d,;, — d, by Equation 10.2 we see that the value d that we are looking for
satisfies the equation

d=h(d) . (10.3)
One solution of this equation is always d = 1, since
L=po+pr+pz+---.

This is where Watson made his mistake. He assumed that 1 was the only solution to
Equation 10.3. To examine this question more carefully, we first note that solutions
to Equation 10.3 represent intersections of the graphs of
y==z
and
y="h(z) =po+pi1z+pz+--- .
Thus we need to study the graph of y = h(z). We note that h(0) = pg. Also,

R'(2) = p1 + 2paz 4+ 3p32® 4+ -+, (10.4)

and
R"(2) = 2po +3-2p3z +4-3pg® -+ .

From this we see that for z > 0, A'(z) > 0 and h”(z) > 0. Thus for nonnegative
z, h(z) is an increasing function and is concave upward. Therefore the graph of
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0 d<1 1 0 d=1 0 1 d>1
@ (b) ©

Figure 10.2: Graphs of y = z and y = h(2).

y = h(z) can intersect the line y = z in at most two points. Since we know it must
intersect the line y = z at (1,1), we know that there are just three possibilities, as
shown in Figure 10.2.

In case (a) the equation d = h(d) has roots {d,1} with 0 < d < 1. In the second
case (b) it has only the one root d = 1. In case (c) it has two roots {1,d} where
1 < d. Since we are looking for a solution 0 < d < 1, we see in cases (b) and (c)
that our only solution is 1. In these cases we can conclude that the process will die
out with probability 1. However in case (a) we are in doubt. We must study this
case more carefully.

From Equation 10.4 we see that

R'(1)=p1+2p2+3ps+---=m,

where m is the expected number of offspring produced by a single parent. In case (a)
we have h/(1) > 1, in (b) A'(1) = 1, and in (¢) A'(1) < 1. Thus our three cases
correspond to m > 1, m = 1, and m < 1. We assume now that m > 1. Recall that
do =0, di = h(dy) = po, d2 = h(dr), ..., and d,, = h(d,—1). We can construct
these values geometrically, as shown in Figure 10.3.

We can see geometrically, as indicated for dy, di, do, and d3 in Figure 10.3, that
the points (d;, h(d;)) will always lie above the line y = z. Hence, they must converge
to the first intersection of the curves y = z and y = h(z) (i.e., to the root d < 1).
This leads us to the following theorem. O

Theorem 10.3 Consider a branching process with generating function h(z) for the
number of offspring of a given parent. Let d be the smallest root of the equation
z = h(z). If the mean number m of offspring produced by a single parent is < 1,
then d = 1 and the process dies out with probability 1. If m > 1 then d < 1 and
the process dies out with probability d. O

We shall often want to know the probability that a branching process dies out
by a particular generation, as well as the limit of these probabilities. Let d, be
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dg=0 d; d, dy d 1
Figure 10.3: Geometric determination of d.

the probability of dying out by the nth generation. Then we know that d; = pg.
We know further that d,, = h(d,—1) where h(z) is the generating function for the
number of offspring produced by a single parent. This makes it easy to compute
these probabilities.

The program Branch calculates the values of d,,. We have run this program
for 12 generations for the case that a parent can produce at most two offspring and
the probabilities for the number produced are pg = .2, p; = .5, and ps = .3. The
results are given in Table 10.1.

We see that the probability of dying out by 12 generations is about .6. We shall
see in the next example that the probability of eventually dying out is 2/3, so that
even 12 generations is not enough to give an accurate estimate for this probability.

We now assume that at most two offspring can be produced. Then

h(z) =po+pi1z+p22° .
In this simple case the condition z = h(z) yields the equation
d = po+pi1d+pad”

which is satisfied by d = 1 and d = po/p2. Thus, in addition to the root d = 1 we
have the second root d = pg/ps. The mean number m of offspring produced by a
single parent is

m=p1+2ppo=1—po—p2+2p2=1—po+p2.

Thus, if pg > p2, m < 1 and the second root is > 1. If pg = p2, we have a double
root d = 1. If pg < p2, m > 1 and the second root d is less than 1 and represents
the probability that the process will die out.
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Generation  Probability of dying out

1 2

2 312

3 .385203
4 437116
5 475879
6 .505878
7 529713
8 .549035
9 .564949
10 578225
11 .589416
12 .598931

Table 10.1: Probability of dying out.

po = .2092
P = .2360
ps = .1593
ps = .0828
ps = .0357
pr = .0042
ps = .0011
pe = .0002
p1o = .0000

Table 10.2: Distribution of number of female children.

Example 10.9 Keyfitz® compiled and analyzed data on the continuation of the
female family line among Japanese women. His estimates at the basic probability
distribution for the number of female children born to Japanese women of ages
45-49 in 1960 are given in Table 10.2.

The expected number of girls in a family is then 1.837 so the probability d of
extinction is less than 1. If we run the program Branch, we can estimate that d is
in fact only about .324. O

Distribution of Offspring

So far we have considered only the first of the two problems raised by Galton,
namely the probability of extinction. We now consider the second problem, that
is, the distribution of the number Z,, of offspring in the nth generation. The exact
form of the distribution is not known except in very special cases. We shall see,

6N. Keyfitz, Introduction to the Mathematics of Population, rev. ed. (Reading, PA: Addison
Wesley, 1977).
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however, that we can describe the limiting behavior of Z,, as n — oco.

We first show that the generating function h,(z) of the distribution of Z,, can
be obtained from h(z) for any branching process.

We recall that the value of the generating function at the value z for any random
variable X can be written as

h(z) = BE(z%) =po +p1z +paz” +--- .

That is, h(z) is the expected value of an experiment which has outcome 27 with
probability p;.

Let S, = X; + X2 + --- + X,, where each X; has the same integer-valued
distribution (p;) with generating function k(z) = po + p1z + p2z? + . Let ky(2)
be the generating function of S,,. Then using one of the properties of ordinary
generating functions discussed in Section 10.1, we have

since the X;’s are independent and all have the same distribution.
Consider now the branching process Z,,. Let h,(z) be the generating function
of Z,,. Then
hati(z) = B(z%+)
= > E(E"Zy =k)P(Zy=k) .
k

If Z, =k, then Z,11 = X1+ X2+ - -+ Xi where X3, Xo, ..., Xj are independent
random variables with common generating function h(z). Thus

E(2%1|Z, = k) = B(zX+HXet 4 X0y = ((2))F

and
hny1(z) = Z(h(z))kP(Zn = k)
k
But
hn(z) = ZP(Zn =k)z"
k
Thus,
hnt1(2) = hn(h(2)) . (10.5)

Hence the generating function for Zs is ha(z) = h(h(2)), for Z3 is

and so forth. From this we see also that
hnt1(2) = h(hn(2)) - (10.6)

If we differentiate Equation 10.6 and use the chain rule we have

M1 (2) = W (ha(2)) Dy, (2) -
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Putting z = 1 and using the fact that h,(1) = 1 and h),(1) = m, = the mean
number of offspring in the n’th generation, we have

Mpt1 =M - My, .

2 2

Thus, ms = m -m = m2, mg = m-m? = m?, and in general
b b) b

my, =m"

Thus, for a branching process with m > 1, the mean number of offspring grows
exponentially at a rate m.

Examples

Example 10.10 For the branching process of Example 10.8 we have

h(z) = 1/2+(1/4)z+ (1/4)2%,
ha(z) = h(h(2)) =1/2+ (1/4)[1/2+ (1/4)z + (1/4)77]
= +(1/H[1/24 (1/4)z + (1/4)2%)?
= 11/16 4+ (1/8)z + (9/64)2% + (1/32)2® + (1/64)2* .

The probabilities for the number of offspring in the second generation agree with
those obtained directly from the tree measure (see Figure 1). O

It is clear that even in the simple case of at most two offspring, we cannot easily
carry out the calculation of h,(z) by this method. However, there is one special
case in which this can be done.

Example 10.11 Assume that the probabilities p1, po, ... form a geometric series:
pr=>bcf 1, k=1,2 ..., with0<b<1—cand
po = l—p1—p2—---
= 1-b—bc—bc*—---
B b
T 1-¢’

Then the generating function h(z) for this distribution is

h(z) = po+piz+pez*+---
b
= 1—1——|—bz+bczz—|—bc223+---
—c
b bz

= 1- .
l—c 1-—cz

From this we find

bcz b b
W (z) = =
() (1—c2)? Tz ez (1—cz)?
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and

b
(1—c)?
We know that if m < 1 the process will surely die out and d = 1. To find the
probability d when m > 1 we must find a root d < 1 of the equation

m="h(1)=

Z:h(Z) ’

or

_ b bz
l—¢c 1-—cz

z=1

This leads us to a quadratic equation. We know that z = 1 is one solution. The

other is found to be
1= b—c

(-0
It is easy to verify that d < 1 just when m > 1.
It is possible in this case to find the distribution of Z,. This is done by first
finding the generating function h,,(z).” The result for m # 1 is:

1-a 1?
m"[_}z

The coefficients of the powers of z give the distribution for Z,:

1- "1
P(Zy—0)=1—mn =4 _dm" =1

m" —d m" —d
and L d 2 Lot
_ m" — j—
Pt () (22
(Zn=3)=m m" —d m" —d
for j > 1. O

Example 10.12 Let us re-examine the Keyfitz data to see if a distribution of the
type considered in Example 10.11 could reasonably be used as a model for this
population. We would have to estimate from the data the parameters b and ¢ for
the formula pj = bc¥*~1. Recall that

np:aéiﬁ (10.7)

and the probability d that the process dies out is
_1-b-c

d=———. 10.8
e(l—c) (108)
Solving Equation 10.7 and 10.8 for b and ¢ gives
~m—1
 m—d

"T. E. Harris, The Theory of Branching Processes (Berlin: Springer, 1963), p. 9.
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Geometric
p; Data Model
0 .2092 .1816
1 .2584 .3666
2 .2360 .2028
3 .1593 1122
4 .0828 .0621
5 .0357 .0344
6 .0133 .0190
7 .0042 .0105
8 .0011 .0058
9 .0002 .0032
10 .0000 .0018

Table 10.3: Comparison of observed and expected frequencies.

and N
b= m(m - d) ’

We shall use the value 1.837 for m and .324 for d that we found in the Keyfitz
example. Using these values, we obtain b = .3666 and ¢ = .5533. Note that
(1-¢)?2 < b < 1-c, as required. In Table 10.3 we give for comparison the
probabilities py through pg as calculated by the geometric distribution versus the
empirical values.

The geometric model tends to favor the larger numbers of offspring but is similar
enough to show that this modified geometric distribution might be appropriate to
use for studies of this kind.

Recall that if S, = X; + X5 + --- + X,, is the sum of independent random
variables with the same distribution then the Law of Large Numbers states that
Sp/n converges to a constant, namely E(X;). It is natural to ask if there is a
similar limiting theorem for branching processes.

Consider a branching process with Z,, representing the number of offspring after
n generations. Then we have seen that the expected value of Z,, is m™. Thus we can
scale the random variable Z,, to have expected value 1 by considering the random

variable p
W, = =2 .

n

In the theory of branching processes it is proved that this random variable W,
will tend to a limit as n tends to infinity. However, unlike the case of the Law of
Large Numbers where this limit is a constant, for a branching process the limiting
value of the random variables W,, is itself a random variable.

Although we cannot prove this theorem here we can illustrate it by simulation.
This requires a little care. When a branching process survives, the number of
offspring is apt to get very large. If in a given generation there are 1000 offspring,
the offspring of the next generation are the result of 1000 chance events, and it will
take a while to simulate these 1000 experiments. However, since the final result is
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5 10 15 20 25
Figure 10.4: Simulation of Z,, /m™ for the Keyfitz example.

the sum of 1000 independent experiments we can use the Central Limit Theorem to
replace these 1000 experiments by a single experiment with normal density having
the appropriate mean and variance. The program BranchingSimulation carries
out this process.

We have run this program for the Keyfitz example, carrying out 10 simulations
and graphing the results in Figure 10.4.

The expected number of female offspring per female is 1.837, so that we are
graphing the outcome for the random variables W,, = Z,,/(1.837)™. For three of
the simulations the process died out, which is consistent with the value d = .3 that
we found for this example. For the other seven simulations the value of W,, tends
to a limiting value which is different for each simulation. a

Example 10.13 We now examine the random variable Z, more closely for the
case m < 1 (see Example 10.11). Fix a value t > 0; let [tm™] be the integer part of
tm™. Then

1-d m®—1 . n
PZn: tm™ — n 2 [tm™]—1
( [tm”]) m(m”—d) (m"—d)

1 1—d o, 1—1/m" e,
= — (7= ) :

m" 1 —d/m 1—d/m

where |a| < 2. Thus, as n — oo,
—t

m"P(Z, = [tm"]) — (1 — d)Q% — (1 —d)2et0-a)

For ¢t =0,
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We can compare this result with the Central Limit Theorem for sums S,, of integer-
valued independent random variables (see Theorem 9.3), which states that if ¢ is an
integer and u = (¢t — nu)/Vo?n, then as n — oo,

Vo?n P(S, =uVo?n+ un) —

—u?/2

1
e
V2
We see that the form of these statements are quite similar. It is possible to prove
a limit theorem for a general class of branching processes that states that under
suitable hypotheses, as n — oo,

m"P(Z, = [tm"]) — k(t) ,

for t > 0, and
P(Z,=0)—d.

However, unlike the Central Limit Theorem for sums of independent random vari-
ables, the function k(t) will depend upon the basic distribution that determines the
process. Its form is known for only a very few examples similar to the one we have
considered here. O

Chain Letter Problem

Example 10.14 An interesting example of a branching process was suggested by
Free Huizinga.® In 1978, a chain letter called the “Circle of Gold,” believed to have
started in California, found its way across the country to the theater district of New
York. The chain required a participant to buy a letter containing a list of 12 names
for 100 dollars. The buyer gives 50 dollars to the person from whom the letter was
purchased and then sends 50 dollars to the person whose name is at the top of the
list. The buyer then crosses off the name at the top of the list and adds her own
name at the bottom in each letter before it is sold again.

Let us first assume that the buyer may sell the letter only to a single person.
If you buy the letter you will want to compute your expected winnings. (We are
ignoring here the fact that the passing on of chain letters through the mail is a
federal offense with certain obvious resulting penalties.) Assume that each person
involved has a probability p of selling the letter. Then you will receive 50 dollars
with probability p and another 50 dollars if the letter is sold to 12 people, since then
your name would have risen to the top of the list. This occurs with probability p'2,
and so your expected winnings are —100 4+ 50p 4+ 50p'2. Thus the chain in this
situation is a highly unfavorable game.

It would be more reasonable to allow each person involved to make a copy of
the list and try to sell the letter to at least 2 other people. Then you would have
a chance of recovering your 100 dollars on these sales, and if any of the letters is
sold 12 times you will receive a bonus of 50 dollars for each of these cases. We can
consider this as a branching process with 12 generations. The members of the first

8Private communication.



390 CHAPTER 10. GENERATING FUNCTIONS

generation are the letters you sell. The second generation consists of the letters sold
by members of the first generation, and so forth.

Let us assume that the probabilities that each individual sells letters to 0, 1,
or 2 others are pg, p1, and po, respectively. Let Z1, Zs, ..., Z12 be the number of
letters in the first 12 generations of this branching process. Then your expected
winnings are

50(E(Zy) + E(Z12)) = 50m + 50m*? |

where m = p1 +2p- is the expected number of letters you sold. Thus to be favorable
we just have
50m + 50m!'? > 100 ,

or
m+m?>2.

But this will be true if and only if m > 1. We have seen that this will occur in
the quadratic case if and only if po > po. Let us assume for example that py = .2,
p1 = .5, and ps = .3. Then m = 1.1 and the chain would be a favorable game. Your
expected profit would be

50(1.1 + 1.1'%) — 100 ~ 112 .

The probability that you receive at least one payment from the 12th generation is
1—d12. We find from our program Branch that dio = .599. Thus, 1 —d;2 = .401 is
the probability that you receive some bonus. The maximum that you could receive
from the chain would be 50(2 + 2!?) = 204,900 if everyone were to successfully sell
two letters. Of course you can not always expect to be so lucky. (What is the
probability of this happening?)

To simulate this game, we need only simulate a branching process for 12 gen-
erations. Using a slightly modified version of our program BranchingSimulation
we carried out twenty such simulations, giving the results shown in Table 10.4.

Note that we were quite lucky on a few runs, but we came out ahead only a
little less than half the time. The process died out by the twelfth generation in 12
out of the 20 experiments, in good agreement with the probability dio = .599 that
we calculated using the program Branch.

Let us modify the assumptions about our chain letter to let the buyer sell the
letter to as many people as she can instead of to a maximum of two. We shall
assume, in fact, that a person has a large number N of acquaintances and a small
probability p of persuading any one of them to buy the letter. Then the distribution
for the number of letters that she sells will be a binomial distribution with mean
m = Np. Since N is large and p is small, we can assume that the probability p;
that an individual sells the letter to j people is given by the Poisson distribution

e~™mJ

J!

pj =
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Profit

Zy Z3z Ly Zs Zs Ly Zg Zyg Zig Zi1 Zi2

Z

-50
250
-100

0

50
250
-100

0

300

-50
-100

0

-50
750

15

13

12

12

-50

-50
200

-50

-50

-50

50
850

13 16 17 15 18

10

-50

Table 10.4: Simulation of chain letter (finite distribution case).
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Zl Zg Z3 Z4 Z5 Z6 Z7 Zg Zg ZlO le Z12 Profit
1 2 6 T 7 8 11 9 7 6 6 5 200
1 0 o 0 o0 o 0 0 O 0 0 0 -50
1 0 0 0 0 0 0 0 0 0 0 0 -50
1 1 1 0 0 0 0 0 0 0 0 0 -50
0 0 o 0 0 O 0o 0 0 0 0 0 -100
1 1 1 1 1 1 2 4 9 7 9 7 300
2 3 3 4 2 o 0 0 O 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 -50
2 1 0 0 0 0 0 0 0 0 0 0 0
3 3 4 711 17 14 11 11 10 16 25 1300
0 0 o 0 0 O 0o 0 0 0 0 0 -100
1 2 2 1 1 3 1 0 0 0 0 0 -50
0 0 o 0 0 O 0o 0 0 0 0 0 -100
2 3 1 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 50
1 0 o 0 0 O 0o 0 0 0 0 0 -50
3 4 4 7 10 11 9 11 12 14 13 10 550
1 3 3 4 9 5 7 9 8 8 6 3 100
1 0 4 6 6 9 10 13 0 0 0 0 -50
1 0 0 0 0 0 0 0 0 0 0 0 -50

Table 10.5: Simulation of chain letter (Poisson case).

The generating function for the Poisson distribution is
o0

h(z) = Zw

=

J~J

= "y

= e -
Jj=0

4!

— eTMeMmZ — em(zfl) )

The expected number of letters that an individual passes on is m, and again to
be favorable we must have m > 1. Let us assume again that m = 1.1. Then we
can find again the probability 1 — di5 of a bonus from Branch. The result is .232.
Although the expected winnings are the same, the variance is larger in this case,
and the buyer has a better chance for a reasonably large profit. We again carried
out 20 simulations using the Poisson distribution with mean 1.1. The results are
shown in Table 10.5.

We note that, as before, we came out ahead less than half the time, but we also
had one large profit. In only 6 of the 20 cases did we receive any profit. This is
again in reasonable agreement with our calculation of a probability .232 for this
happening. O
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Exercises

1 Let Zy, Zs, ..., Zn describe a branching process in which each parent has
j offspring with probability p;. Find the probability d that the process even-
tually dies out if

e) pj = (1/3)(2/3)7, for j=10,1,2, ....
f) pj =e 229/jl, for j =0, 1, 2, ... (estimate d numerically).

(a) po=1/2, p1 = 1/4, and py = 1/4.
(b) po=1/3,p1 =1/3, and p, = 1/3.
(¢) po=1/3, pp =0, and ps = 2/3.
(d) pj =1/27t1 for j=0,1,2,....

)

)

(
(

2 Let Zy, Zs, ..., Zn describe a branching process in which each parent has
j offspring with probability p;. Find the probability d that the process dies
out if

(a) po=1/2, p1 =p2 =0, and p3 = 1/2.
(b) po =p1 =p2 =p3 =1/4.
(¢) po=t,p1 =1—2t, ps =0, and p3 = ¢, where t < 1/2.

3 In the chain letter problem (see Example 10.14) find your expected profit if

(a) po=1/2,p1 =0, and py = 1/2.
(b) po=1/6, p1 =1/2, and po = 1/3.

Show that if pg > 1/2, you cannot expect to make a profit.

4 Let Sy = X1 + Xo + -+ + Xy, where the X;’s are independent random
variables with common distribution having generating function f(z). Assume
that N is an integer valued random variable independent of all of the X; and
having generating function g(z). Show that the generating function for Sy is
h(z) = g(f(2)). Hint: Use the fact that

h(z) = E(z°V) =Y E(z"|N =k)P(N =k) .
k

5 We have seen that if the generating function for the offspring of a single
parent is f(z), then the generating function for the number of offspring after
two generations is given by h(z) = f(f(z)). Explain how this follows from the
result of Exercise 4.

6 Consider a queueing process (see Example 5.7) such that in each minute either
0 or 1 customers arrive with probabilities p or ¢ = 1 — p, respectively. (The
number p is called the arrival rate.) When a customer starts service she
finishes in the next minute with probability r. The number r is called the
service rate.) Thus when a customer begins being served she will finish being
served in j minutes with probability (1 —7)/~1r for j =1,2,3,....



394 CHAPTER 10. GENERATING FUNCTIONS

(a) Find the generating function f(z) for the number of customers who arrive
in one minute and the generating function g(z) for the length of time that
a person spends in service once she begins service.

(b) Cousider a customer branching process by considering the offspring of a
customer to be the customers who arrive while she is being served. Using
Exercise 4, show that the generating function for our customer branching
process is h(z) = g(f(z)).

(c) If we start the branching process with the arrival of the first customer,
then the length of time until the branching process dies out will be the
busy period for the server. Find a condition in terms of the arrival rate
and service rate that will assure that the server will ultimately have a
time when he is not busy.

7 Let N be the expected total number of offspring in a branching process. Let
m be the mean number of offspring of a single parent. Show that

N:1+(Zpk-k>N:1+mN
and hence that N is finite if and only if m < 1 and in that case N = 1/(1—m).

8 Consider a branching process such that the number of offspring of a parent is
j with probability 1/2/F! for j =0, 1, 2, ....

(a) Using the results of Example 10.11 show that the probability that there
are j offspring in the nth generation is

1 n 5 . .

o = oD G ), > 1

i o if j =0.

(b) Show that the probability that the process dies out exactly at the nth
generation is 1/n(n + 1).

(¢) Show that the expected lifetime is infinite even though d = 1.

10.3 Generating Functions for Continuous Densi-
ties

In the previous section, we introduced the concepts of moments and moment gen-

erating functions for discrete random variables. These concepts have natural ana-

logues for continuous random variables, provided some care is taken in arguments
involving convergence.

Moments

If X is a continuous random variable defined on the probability space €, with
density function fx, then we define the nth moment of X by the formula

“+o0
un:E(X”):/ 2" fx(z)de

— 0o
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provided the integral

—+oo
o = EQX) = [ el (o) o
—o0
is finite. Then, just as in the discrete case, we see that pug = 1, u3 = p, and
po — pf = 0.

Moment Generating Functions

Now we define the moment generating function g(t) for X by the formula

o0 ko> kg
o) = Y A=y e
k=0 k=0 '
= E(etX):/+ooetxfx(x)d:C,

provided this series converges. Then, as before, we have
pn = g(0) .

Examples

Example 10.15 Let X be a continuous random variable with range [0,1] and
density function fx(z) =1 for 0 <z <1 (uniform density). Then

! 1
n: nd = 5
K /Ox * n+1

and
> ot
gt) = ,
Pt (k+1)!
-1
B t
Here the series converges for all t. Alternatively, we have
+oo
o) = [ ehxeyds
1 t
-1
= / et dy = & .
0 t
Then (by L’Hépital’s rule)
et —1
po = g(0)=lim——=1,
te! —et+1 1
— A0 = T _
pm = g(0)=lim 2 5

1
o " T -
p2 = ¢'(0) = lim 1 3"
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In particular, we verify that u = ¢’(0) = 1/2 and

as before (see Example 6.25). O

Example 10.16 Let X have range [0,00) and density function fx(x) = e™*
(exponential density with parameter A). In this case

= A A
"AemMdr = AN—-1)"— N
/0 x" e x ( )d/\"/o e x
nd"[l]in!
d X A

fn
= A1)

and

oo

k
o) = S

0

=

[ee}

te A
U ers

k=0

Here the series converges only for |t| < \. Alternatively, we have

g(t) = / e Xe™ M da
0
Aelt=Vz |5
o t=A |, A-t]

Now we can verify directly that

n!
(A —t)ntt

n!

=

pn = g\ (0) =

t=0
Example 10.17 Let X have range (—o0,+00) and density function

(normal density). In this case we have

1 /+OO n_—x?/2 d
= — z"e T
Hn o
_ 52"2:, if n = 2m,
0, ifn=2m+1.

— 00
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(These moments are calculated by integrating once by parts to show that pu, =
(n — 1)pn—2, and observing that po = 1 and p1 = 0.) Hence,

oo fint
g(t) = Z !
n=0 ’

= > g =
B 2mm! '

m=0

n

This series converges for all values of t. Again we can verify that ¢(™ (0) = p,,.
Let X be a normal random variable with parameters p and o. It is easy to show
that the moment generating function of X is given by

etu+(02/2)t2 )
Now suppose that X and Y are two independent normal random variables with

parameters py, o1, and us, o2, respectively. Then, the product of the moment
generating functions of X and Y is

et(H1+M2)+((‘7%+‘7§)/2)t2 .
This is the moment generating function for a normal random variable with mean
w1 + po and variance o? + o3. Thus, the sum of two independent normal random

variables is again normal. (This was proved for the special case that both summands
are standard normal in Example 7.5.) O

In general, the series defining g(¢) will not converge for all £. But in the important
special case where X is bounded (i.e., where the range of X is contained in a finite
interval), we can show that the series does converge for all ¢.

Theorem 10.4 Suppose X is a continuous random variable with range contained
in the interval [—M, M]. Then the series

— it"
g(t) = Z e
k=0
converges for all ¢ to an infinitely differentiable function g(t), and g™ (0) = .

Proof. We have
+M
= [t pxeydo

—M
SO
+M
el < / j2)* fx (z) de

-M

“+M
< M’f/ fx(z)de = M" .

-M



398 CHAPTER 10. GENERATING FUNCTIONS

Hence, for all N we have

N k
< Z (M]t)) < Mt

which shows that the power series converges for all . We know that the sum of a
convergent power series is always differentiable. O

Moment Problem

Theorem 10.5 If X is a bounded random variable, then the moment generating
function gx (t) of z determines the density function fx(z) uniquely.

Sketch of the Proof. We know that
o0 k
Ml
gx(t) = > e
k=0

/ T ) d

— 00

If we replace ¢t by i7, where 7 is real and ¢ = v/—1, then the series converges for
all 7, and we can define the function

+o0
kx(r) = gx (i) = / e fx () da .
— o0
The function kx (7) is called the characteristic function of X, and is defined by
the above equation even when the series for gx does not converge. This equation
says that kx is the Fourier transform of fx. It is known that the Fourier transform
has an inverse, given by the formula

IR
x)=— e kx(rT)dr
fx@ =5 [ ()
suitably interpreted.’ Here we see that the characteristic function kx, and hence
the moment generating function gx, determines the density function fx uniquely
under our hypotheses. O

Sketch of the Proof of the Central Limit Theorem

With the above result in mind, we can now sketch a proof of the Central Limit
Theorem for bounded continuous random variables (see Theorem 9.6). To this end,
let X be a continuous random variable with density function fx, mean p = 0 and
variance 02 = 1, and moment generating function g(t) defined by its series for all ¢.

9H. Dym and H. P. McKean, Fourier Series and Integrals (New York: Academic Press, 1972).
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Let X7, X5, ..., X,, be an independent trials process with each X; having density
fx,andlet S, = X1+ Xo+ -+ X,,, and S = (5, —nu)/\/m = Sn/v/n. Then
each X; has moment generating function g(t), and since the X; are independent,
the sum S, just as in the discrete case (see Section 10.1), has moment generating
function

gn(t) = (g(t))n )

and the standardized sum S} has moment generating function

- ()

We now show that, as n — oo, ¢ (t) — et2/2, where e is the moment gener-
ating function of the normal density n(z) = (1/v/ 271')6_”2/2 (see Example 10.17).
To show this, we set u(t) = log g(t), and

up,(t) = loggy(t)

- s () (5.

and show that v’ (t) — t?/2 as n — oo. First we note that

t2/2

u(0) = loggn(0)=0,
) g0 m
woy 9"(0)g(0) = (¢'(0))?
w0 = (9(0)?
_ e 2
1

Now by using L’Hopital’s rule twice, we get

lim w)(t) = lim
n—oo S—00 s

Hence, g (t) — ¢'’/2 as n — oo. Now to complete the proof of the Central Limit
Theorem, we must show that if g% (t) — e’/ 2 then under our hypotheses the
distribution functions F*(z) of the S’ must converge to the distribution function

F(x) of the normal variable N; that is, that

1 a
F)(a) = P(S; <a)— E/ e 2y |

and furthermore, that the density functions f(z) of the S} must converge to the
density function for N; that is, that

) 1
file) = —=e /2
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as m — 0o.

Since the densities, and hence the distributions, of the S} are uniquely deter-
mined by their moment generating functions under our hypotheses, these conclu-
sions are certainly plausible, but their proofs involve a detailed examination of
characteristic functions and Fourier transforms, and we shall not attempt them
here.

In the same way, we can prove the Central Limit Theorem for bounded discrete
random variables with integer values (see Theorem 9.4). Let X be a discrete random
variable with density function p(j), mean p = 0, variance o>
generating function g(¢), and let X, Xo, ..., X,, form an independent trials process
with common density p. Let S, = X1+ Xo + -+ X, and S} = S,/+/n, with

n
densities p,, and p}, and moment generating functions g, (t) and g*(t) = (g(ﬁ)) .

= 1, and moment

Then we have
2
gn(t) — e /?,
just as in the continuous case, and this implies in the same way that the distribution
functions Ff(x) converge to the normal distribution; that is, that

1 a
Fi(a) = P(S? < a) — E/ e 2 dy |
— 00

as n — o0o.

The corresponding statement about the distribution functions p,, however, re-
quires a little extra care (see Theorem 9.3). The trouble arises because the dis-
tribution p(z) is not defined for all z, but only for integer x. It follows that the
distribution p# (x) is defined only for x of the form j//n, and these values change
as n changes.

We can fix this, however, by introducing the function p(z), defined by the for-
mula

), ifj-1/2<a<i+1/2,
p(z) = { 0, otherwise.

Then p(z) is defined for all z, p(5) = p(j), and the graph of p(z) is the step function

for the distribution p(j) (see Figure 3 of Section 9.1).

In the same way we introduce the step function p,(x) and 7}, (z) associated with
the distributions p,, and p}, and their moment generating functions g, (t) and g (¢).
If we can show that g (t) — et’/2 then we can conclude that

—x 1 t2/2
x) — e ’e
as n — oo, for all z, a conclusion strongly suggested by Figure 9.3.
Now g(t) is given by

“+oo
gty = / e p(x) dx

— 00
TN i+1/2
= / e p(j) dx
j=—NYi=1/2
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+N t/2 _ —t/2
e e
= Y pi)e
. 2t/2
sinh(t/2)
= ()=
g(t) 2

where we have put
ol/2 _ o—t/2

sinh(¢/2) = 5
In the same way, we find that
_ B sinh(¢/2)
(0 = wO=5
i « o Sinh(t/2y/n
gt = gpn T2

t/2/m
Now, as n — oo, we know that ¢ (t) — et2/2, and, by L’Hopital’s rule,

| sinh(t/2y/7)
NG

It follows that
2

alt) — e/,

and hence that

—x 1 —22/2

T) — e ,
P () W
as n — o0o. The astute reader will note that in this sketch of the proof of Theo-
rem 9.3, we never made use of the hypothesis that the greatest common divisor of
the differences of all the values that the X; can take on is 1. This is a technical
point that we choose to ignore. A complete proof may be found in Gnedenko and

Kolmogorov.?

Cauchy Density

The characteristic function of a continuous density is a useful tool even in cases when
the moment series does not converge, or even in cases when the moments themselves
are not finite. As an example, consider the Cauchy density with parameter a = 1

(see Example 5.10)
1

=TT

If X and Y are independent random variables with Cauchy density f(x), then the
average Z = (X +Y)/2 also has Cauchy density f(z), that is,

f(x)

fz(x) = f(z) .

10B. V. Gnedenko and A. N. Kolomogorov, Limit Distributions for Sums of Independent Random
Variables (Reading: Addison-Wesley, 1968), p. 233.
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This is hard to check directly, but easy to check by using characteristic functions.

Note first that

400 $2

so that po is infinite. Nevertheless, we can define the characteristic function kx (7)

of = by the formula
e iTX 1
= [

This integral is easy to do by contour methods, and gives us

kx(t)=ky(r) = eIl

Hence,
kx iy (1) = (eI = e7?I7,
and since
kz(1) =kx4v(7/2)
we have

kz(r) = e 27/2 = =I7l

This shows that kz = kx = ky, and leads to the conclusions that f; = fx = fy.
It follows from this that if Xy, Xo, ..., X,, is an independent trials process with
common Cauchy density, and if

_X1+X2+"'+Xn
n

Ap

is the average of the X;, then A, has the same density as do the X;. This means
that the Law of Large Numbers fails for this process; the distribution of the average
A, is exactly the same as for the individual terms. Our proof of the Law of Large
Numbers fails in this case because the variance of X; is not finite.

Exercises

1 Let X be a continuous random variable with values in [0, 2] and density fx.
Find the moment generating function g(t) for X if

(a) fx(z)=1/2.

(b) fx(z) = (1/2)x

(¢) fx(z)=1-(1/2)z
(d) fx(z) =1 -2

(e) fx(z) = (3/8)a?

Hint: Use the integral definition, as in Examples 10.15 and 10.16.

2 For each of the densities in Exercise 1 calculate the first and second moments,
p1 and po, directly from their definition and verify that g(0) = 1, ¢’(0) = p1,
and ¢"(0) = pa.
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3 Let X be a continuous random variable with values in [0, c0) and density fx.
Find the moment generating functions for X if

4 For each of the densities in Exercise 3, calculate the first and second moments,
w1 and g, directly from their definition and verify that g(0) =1, ¢’(0) = 1,
and ¢"(0) = p2.

5 Find the characteristic function kx (7) for each of the random variables X of
Exercise 1.

6 Let X be a continuous random variable whose characteristic function kx (7)
is
kx(r)=eI", —00 < T < 400 .

Show directly that the density fx of X is

1
X = sirey
7 Let X be a continuous random variable with values in [0, 1], uniform density
function fx(z) = 1 and moment generating function g(t) = (¢! — 1)/¢t. Find
in terms of g(t) the moment generating function for

(a) —X.

(b) 1+ X

(c) 3X.

(d) aX +b

8 Let X1, Xo, ..., X,, be an independent trials process with uniform density.

Find the moment generating function for
(a) X;.

(b) So=X1+ X,

() Sp=X1+Xo+ -+ X,

(d) A, = S,/n.

(e) S5 = (Sn —nu)/vVno?

9 Let X, Xo, ..., X,, be an independent trials process with normal density of
mean 1 and variance 2. Find the moment generating function for

(a) Xl-
(b) Sy = X1 + X,.
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() Sp=X14+Xo+ -+ X,.
(d) A, = S,/n.
(e) S* = (Sp —nu)/vno2.
10 Let Xy, X, ..., X,, be an independent trials process with density

—|=|

fla) = 5,

—oo < x < +0o0o.

(a) Find the mean and variance of f(x).
(b) Find the moment generating function for Xy, S,, A,, and S;.

(¢) What can you say about the moment generating function of S’ as n —
00?

(d) What can you say about the moment generating function of A,, as n —
oo?



