This is the NPR Sunday Puzzle for the week of 1/3/2010.

This challenge came from Ed Pegg Jr., who runs http://www.mathpuzzle.com/.

Write down the digits from 2 to 7, in order. Add two mathematical symbols to get an expression equaling 2010. What symbols are these?

Answer: 2345*6/7=2010

Here are all the solutions for the years from 1 to 5000.

C:\Users\Lee\MYSTUF~1\tc>tinyc.exe

tiny-c/PC Interpreter  Version PC-01-07
Copyright (c) 1984 by Scott B. Guthery
Implemented 5/16/09 by Lee Bradley / Ed Davis

tiny-c Shell - 2/9/9

tc>.r npr.tc
 1698
 0 48 1698 22802
tc>.npr

npr.tc - tct - 1/8/2010

see http://primepuzzle.com/tc/npr.html

23+45-67=1   
23-45+67=45  
23+45+67=135 
234-5-67=162 
234-56-7=171 
234+5-67=172 
234-56+7=185 
234-56/7=226 
234+56/7=242 
2+345-67=280 
234+56-7=283 
234-5+67=296 
234+56+7=297 
234+5+67=306 
2+345+67=414 
23+456-7=472 
23+456+7=486 
2-34+567=535 
234+5*67=569 
23-4+567=586 
23+4+567=594 
2+34+567=603 
2*345-67=623 
234+56*7=626 
2*34+567=635 
23*4+567=659 
2*345+67=757 
23*45-67=968 
23*45+67=1102
234*5-67=1103
234*5+67=1237
234*56/7=1872
2345*6/7=2010
23+4*567=2291
2345-6*7=2303
2345-6-7=2332
2345+6-7=2344
2345-6+7=2346
2345+6+7=2358
2345+6*7=2387
23+45*67=3038
23+456*7=3215
2+3456-7=3451
2+3456+7=3465
23*45*67=3809
2-3+4567=4566
2+3+4567=4572
2*3+4567=4573
These were generated by the tiny-c program npr.tc.

The tiny-c program was translated into BASIC and may be seen at npr.bas.

1 45 135 162 171 172 185 226 242 280 283 296 297 306 414 472 486 535 569 586 594 603 623 626 635 659 757 968 1102 1103 1237 1872 2010 2291 2303 2332 2344 2346 2358 2387 3038 3215 3451 3465 4566 4572 4573 6905 6919 10481 10495 13097 13111 13703 14063 14077 19280 23117 24194 27402 38556 46230 48384 52164 69345 73416 78390 91728 98490

All 69 positive (see above) (and 160-69=91 negative) values of the (1+2+3+4)*4*4=160 expressions that can be built using the numbers 2 thru 7 in order and +, -,*, / are shown at http://home.astound.net/puzzleblog/2010Expressions.htm

Blaine's Puzzle Blog has a discussion of this interesting problem.